
r

Touch Control

Add Touch Control to your

Microcontroller Project

Bruce E. Hall, W8BH

Introduction.

If you have an ILI9341 display module, and want to add touch control to your projects, this article is for

you. First, determine that your module is touch-enabled. Many online vendors advertise their modules

as touch-screens, but in fact they are not. Caveat Emptor.

There are 3 physical signs that your screen is touch-enabled:

1. Does it have a touch panel?

The touch panel is a thin, transparent overlay that is

bonded to the top surface of the display. The clues to

its presence are four, thick traces on a flexible cable

that connect the touch panel to your module. Carefully

examine the flexible cables, found on one of the short

sides of the display.

2. Does it have touch pins?

Count the number of pins on each side of the module.

Modules with touch pins usually have 14 pins on one

side, and 4 pins on the other. The touch pins are often

labelled “T_IRQ”, “T_DO”, “T_DIN”, “T_CS”, and

“T_CLK”.

Display with flexible 4-wire touch cable

Display with no touch cable

14 pins, with the first 5 labelled as touch

http://w8bh.net/

3. Does it have a touch controller?

The touch

controller is a

small, square

surface-mounted

chip on the back

of the module,

often located

adjacent to the touch pins. This part is the

XPT2046. Clone chips will often use a

similar part number, such as “RB2046”. You

might also encounter boards that have pads

for the chip, but no chip installed.

STEP1: WIRING

After confirming that you have a touch-

screen, it is time to add it to your circuit.

The XPT2046 touch controller uses SPI to

communicate with your microcontroller,

just like the display. So, we will add it to

the existing three-wire SPI bus (MISO,

MOSI, SCK). For the touch pins, these lines

have slightly different names: MISO is

“T_DO”, MOSI is “T_DI”, and SCK is

“T_CLK”:

The touch controller and the display are both peripheral devices. Only one peripheral device can be

active on the SPI bus at a time. So how are the controlled? By adding an additional line for each device,

called “chip select”. The microcontroller enables only one of these lines at a line, and the peripheral will

only read from or write to the bus when its corresponding chip select line is active:

The above description is true for all

microcontrollers. For the rest of this

tutorial, however, I will use the Blue Pill

(STM32F103) microcontroller. For this

micro, connect PA1 to the display CS, and

PA2 to touch chip select “T_CS”. MISO,

MOSI and SCK connect to PA6, PA7, and

PA5, respectively.

Oops! The touch controller ship (U1) is not installed

MISO
MOSI (DISPLAY)

SCK

T_DO
T_DI (TOUCH)
T_CLK

Micro-
controller

MISO
MOSI

SCK

T_DO

T_DI (TOUCH)
T_CLK

T_CS

Micro-
controller

PA2
PA1

MISO
MOSI

SCK

MISO

MOSI (DISPLAY)
SCK

CS

STEP 2: THE SOFTWARE

I assume that you are comfortable with the Arduino IDE and know how to program a Blue Pill

microcontroller. The Blue Pill was initially supported in the Arduino IDE with a fantastic package written

by Roger Clarke and hosted at dan.drown.org. I had great success using this software but Roger no

longer supports his package. In the meantime, STMicroelectronics, the makers of the microcontroller

in the Blue Pill, now support the Arduino environment and have created their own software package. To

use it, copy the following URL into your Arduino Boards Manager list.

https://github.com/stm32duino/BoardManagerFiles/raw/master/STM32/package_stm_index.json

For TFT support I am using “TFT_eSPI” by Bodmer, version 2.2.14. To install it, go to the Arduino library

manager (Sketch->Include Libaries->Manage Libraries), search for “TFT_eSPI”, and install. You can also

find the latest code on GitHub at https://github.com/Bodmer/TFT_eSPI

Once the TFT Library is installed, you will need to configure it by modifying the User_Setup.h file in your

TFT_eSPI library directory. I’d prefer setting the configuration in my sketch, rather than modifying a file,

but this is not a choice. Edit your User_Setup.h file to include the following DEFINEs:

#define STM32

#define ILI9341_DRIVER

#define TFT_SPI_PORT 1

#define TFT_MOSI PA7

#define TFT_MISO PA6

#define TFT_SCLK PA5

#define TOUCH_CS PA2

#define TFT_CS PA1

#define TFT_DC PA0

#define TFT_RST -1

#define LOAD_GLCD

#define LOAD_FONT2

#define LOAD_FONT4

#define LOAD_FONT6

#define LOAD_FONT7

#define LOAD_FONT8

#define LOAD_GFXFF

#define SPI_FREQUENCY 40000000

#define SPI_READ_FREQUENCY 20000000

#define SPI_TOUCH_FREQUENCY 2500000

Next, configure the IDE for your Blue Pill. I am currently using IDE version 1.8.13.

a) Choose Tools-> Board -> STM32 boards (select from submenu) -> Generic STM32F1.

b) Tools -> Board -> Board Part Number -> Blue Pill F103CB (or C8 with 128k)

c) Upload method -> STM32CubeProgrammer (SWD)

For programming you will need an ST-LINK v2-compatible dongle, widely available on eBay and Amazon.

STEP 3: HELLO, WORLD

The following sketch will verify that your hardware is in working order, the STM32 package is correctly

installed, the display library is correctly configured, and that you are able to upload code:

#include <TFT_eSPI.h>

#define TITLE "Hello, World!"

TFT_eSPI tft = TFT_eSPI(); // display object

https://github.com/stm32duino/BoardManagerFiles/raw/master/STM32/package_stm_index.json
https://github.com/Bodmer/TFT_eSPI

void setup() {

 tft.init();

 tft.setRotation(1); // portrait screen orientation

 tft.fillScreen(TFT_BLUE); // start with empty screen

 tft.setTextColor(TFT_YELLOW); // yellow on blue text

 tft.drawString(TITLE,50,50,4); // display text

}

void loop() {

}

If you see “Hello, World” on your display, you are ready to continue. If the display is upside-down,
physically rotate the display or change the setRotation() parameter from 1 to 3.

STEP 4: RESPONDING TO TOUCH EVENTS

The XPT2046 is a resistive touch controller. The connected touch panel consists of two transparent,

resistive-coated sheets, that are separated by a small air gap. When you touch the panel, the two

sheets make contract, and current passes between the sheets. The resistance across the panel

electrodes varies according to the position of the point of contact. Analog-to-digital converters in the

XPT2046 measure the electrode voltages and convert them to an X,Y panel coordinate. The controller

also determines a Z coordinate, which correlates with the amount of pressure applied.

There are many stand-alone Arduino libraries available for the XPT2046. A good example is Paul

Stoffregen’s XPT2046_Touchscreen on Github. However, since touchscreen support is built into

TFT_eSPI, no additional libraries are required here.

A simple way to check for a touch event is to monitor the pressure (Z) coordinate, which is returned by

the function tft.getTouchRawZ. If the returned value is greater than some threshold, then a touch has

occurred:

bool touched() { // true if user touched screen

 const int threshold = 500; // ignore light touches

 return tft.getTouchRawZ() > threshold;

}

Whenever touched() returns true, you can query the controller for the (x,y) coordinate where the touch

occurred. Keep in mind that the analog signals are imprecise, and while the underlying code may

average a few samples to improve accuracy, sometime the returns values are incorrect. You may wish

to apply some simple error checking to the returned values. Consider the following:

void checkForTouch() {

 short unsigned int x, y;

 if (touched()) { // did user touch the display?

 tft.getTouch(&x,&y); // get touch coordinates

 markLocation(x,y); // do something with it!

 delay(300); // and wait (touch deboucer)

 }

}

The function tft.getTouch() is used to return the x,y coordinate of the touch. A small delay (300

milliseconds) is added so that we are not repeatedly acting on the same touch event.

https://github.com/PaulStoffregen/XPT2046_Touchscreen

The following is a complete sketch for testing your touch controller. The source is available on GitHub

here. It places a small yellow circle wherever you touch the screen.

#include <TFT_eSPI.h> // https://github.com/Bodmer/TFT_eSPI

TFT_eSPI tft = TFT_eSPI(); // display object

bool touched() { // true if user touched screen

 const int threshold = 500; // ignore light touches

 return tft.getTouchRawZ() > threshold;

}

void markLocation(int x, int y) {

 tft.fillCircle(x,y,6,TFT_YELLOW); // and place a small circle there

}

void checkForTouch() {

 short unsigned int x, y;

 if (touched()) { // did user touch the display?

 tft.getTouch(&x,&y); // get touch coordinates

 markLocation(x,y); // show it on the screen

 delay(300); // and wait (touch deboucer)

 }

}

void setup() {

 tft.init();

 tft.setRotation(1); // portrait screen orientation

 tft.fillScreen(TFT_BLACK); // clear the screen

}

void loop() {

 checkForTouch(); // test the touch function!

}

Load this sketch and touch the screen. Do you see small circles where you touched? If you do, your

touch controller is working correctly. If not, verify your wiring and TFT_eSPI User_Setup.h file.

.

STEP 5: BUTTONS and REGIONS

Getting the coordinates of a touch press is great, but what we really want to do is determine if a

particular object on the screen, such as a button or other control, was touched. To do this we define a

“region” on the screen. If the point of contact is within the button’s region, then the button was

touched:

 (20,25) (220,25)

Region: X0=20, Y0=25, Width=200, Height=100

Touch Points: G at (50,40) and R at (240,80)

(20,125) (220,125)

Consider the orange rectangular region above that is 200 pixels wide and 100 pixels tall, with its top/left

corner at coordinate (20,25). How do we determine if a given touch point is in the region? A point is in

the region if both of the following conditions are true:

a. its X coordinate is between X0 and (X0 + Width)

b. its Y coordinate is between Y0 and (Y0 + Height)

https://github.com/bhall66/Touch-Control/tree/main/touch_demo1

In the example above, touch point Green at (50,40) is in the region because 50 is between 20 and 220;

and 40 is between 25 and125. Touch point Red is outside the region because its X coordinate, 240, is

not between 20 and 220.

To put these ideas in code, let’s create a region using a C data type called a struct. Then create the

region, using the above coordinates:

typedef struct {

 int x; // x position (left side of rectangle)

 int y; // y position (top of rectangle)

 int w; // width, such that right = x+w

 int h; // height, such that bottom = y+h

} region;

region rOrange = {20,25,200,100}; // example region

Now, to determine if a given point is within this region, create a function inRegion() that accepts a

region and a point, and returns true if the point is within the region:

boolean inRegion (region b, int x, int y) { // true if regsion contains point

(x,y)

 if ((x < b.x) || (x > (b.x + b.w))) // x coordinate out of bounds?

 return false; // if so, leave

 if ((y < b.y) || (y > (b.y + b.h))) // y coordinate out of bounds?

 return false; // if so, leave

 return true; // x & y both in bounds

}

The two highlighted lines correspond to the two conditions from above. The X coordinate is evaluated,

then the Y. If either is out of bounds, the function returns false. Otherwise, the function returns true.

The double parallel line symbol “||” is the OR operator, as in “if a or b are true”.

Now, modify the original markLocation() routine, so that it the color of the marker circle is green if it is

inside the region, and red if it outside:

void markLocation(int x, int y) {

 int color = (inRegion(rOrange,x,y))? // is x,y within the region?

 TFT_GREEN:TFT_RED; // if yes, green circle. if no, red

circle

 tft.fillCircle(x,y,6,color); // place a small circle at x,y

}

The ternary operator “?” is used here, which returns the color green if inRegion() is true, and red if false.

The complete TouchDemo2 sketch is on Github.

STEP 6: MULTIPLE REGIONS

A screen will typically contain more than one button or control, and we will need to determine which

control was touched. If there are just a few screen regions to consider, the simplest way is to test them

individually in a compound if..else statement, like this:

void checkForTouch() {

 uint16_t x, y;

 if (touched()) { // did user touch the display?

 tft.getTouch(&x,&y); // get touch coordinates

 if (inRegion(region1,x,y)) // was time touched?

 touchedR1(x,y);

 else if (inRegion(region2,x,y)) // was location touched?

 touchedR2(x,y);

https://en.wikipedia.org/wiki/Struct_(C_programming_language)
https://en.wikipedia.org/wiki/%3F:
https://github.com/bhall66/Touch-Control/tree/main/touch_demo2

 else if (inRegion(region3,x,y)) // was AM/PM touched?

 touchedR3(x,y);

 delay(300); // touch debouncer

 }

}

Each region is tested, and if the point is within the region, a function corresponding to that region is

called. But if there are many regions to test, using an array might make more sense. Here is the C

construct for initializing an array of regions, and a function to display all of the regions on the screen:

#define ELEMENTS(x) (sizeof(x) / sizeof(x[0])) // Macro to determine #elements/array

region rScreen[] = { // Example multiple-region screen:

 {1,1,320,35}, // Title bar region

 {20,50,200,100}, // Time region

 {240,60,80,35}, // Time Zone region

 {240,110,80,35}, // AM/PM region

 {1,180,140,40}, // Clock status1 region

 {180,180,140,40} // Clock status2 region

};

void fillRegion (int ID, int color) { // display a region on screen

 tft.fillRect(rScreen[ID].x,rScreen[ID].y,

 rScreen[ID].w, rScreen[ID].h, color);

}

void displayScreenRegions() { // display all regions on screen

 for (int i=0; i<ELEMENTS(rScreen); i++) // For each region in the array

 fillRegion(i,TFT_BLUE); // Make it blue.

}

To determine if a touch event falls within one of these regions, construct a for-loop which tests each

region in the array, and returns with the index of the one which matches the touch. If the for-loop

completes, then nothing matched, so return -1 (no match):

int regionID(int x, int y) {

 for (int i=0; i<ELEMENTS(rScreen); i++) // for each region in the array

 if (inRegion(rScreen[i],x,y)) // is the point in this region?

 return i; // yes, so return its index

 return -1; // finished search, didn’t find it.

}

To handle a touch event, call regionID with the touch coordinates, and then create a switch-case

statement to handle each of the regions:

void handleTouchEvent (int x, int y) {

 int ID = regionID(x,y); // which region was pressed?

 switch (ID) {

 case 0: ; // code for region #0

 case 1: ; // code for region #1

 case 2: ; // code for region #2

 }

}

The full code for this third and final touch demo is found on GitHub here.

73,

Bruce.

https://github.com/bhall66/Touch-Control/tree/main/touch_demo3

