Add a TFT
Display to the
Raspberry Pi

Part 3: Graphics

Bruce E. Hall, W8BH

Objective: Draw simple graphics on 160x128 pixel TFT LCD module using Python.

1) INTRODUCTION

In Part 1, we connected a 1.8” TFT module from Adafruit to the Raspberry Pi. Part 2 added
speed using the hardware SPI interface. Now it’s time to build a simple graphics library in
Python. Please refer to Parts 1 and 2 for instructions on how to connect your TFT device to
the Raspberry Pi.

2) DISPLAY COLOR MODES

The default color mode for this controller is RGB666. Pixel colors
are a combination of red, green, and blue color values. Each
subcolor has 6 bits (64 different levels) of intensity. Equal amounts
of red, green, and blue light produce white. Equal amounts of blue
and green produce cyan. Red and green make yellow. Since each
color component is specified by 6 bits, the final color value is 18 bits
in length. The number of possible color combinations in RGB666
colorspace is 218 = 262,144 or 256K.

We represent these color combinations as an 18 bit binary number.
The 6 red bits are first, followed by 6 green bits, followed by 6 blue bits. Our controller wants
to see data in byte-sized chucks, however. For every pixel we must send 24 bits (3 bytes),
arranged as follows:

http://w8bh.net/pi/TFT1.pdf
http://w8bh.net/pi/TFT2.pdf

D

The lowest two bits of each red, green, and blue byte are ignored; only the 6 upper bits of
each byte are used. That’s a bit wasteful, isn’t it? It takes time to send those empty bits.

The TFT controller supports three different color depths. Here they are:

3 RGB444 12 16x16x16 = 4K
5 RGB565 16 32x64x32 = 64K
6 (default) RGB666 18 64x64x64 = 256K

Mode 6 is the default, requiring three bytes per pixel. Notice that Mode 5 is 16 bits in size,
which is exactly 2 bytes in length. No waste! And it still provides for plenty of colors. If we
use mode 5 instead of mode 6, each pixel can be sent in 2 bytes instead of 3. Data
transmission will be faster, at the cost of less color depth. If 65,536 different colors are
enough for you, this is a good tradeoff. Let's use it. Here is how the red, green, and blue bits

are packed into a 2-byte word:

T T

g9

‘PPPPP]

To use a 16-bit color depth instead of the old 18-bit one, the pixel writing routine must be
modified. Compare the old Write888 routine with the new WriteBulk routine:

def Write888 (value, reps,count=1):
"sends a 24-bit RGB pixel data to display, with optional repeat"

def WriteBulk

red = value>>16
green = (value>>8)
value & OxFF
[red,green,blue]

blue
RGB
SetPin (DC, 1)

& OxFF

for a in range (count) :
spi.writebytes (RGB*reps)

#red = upper 8 bits

#green = middle 8 bits

#blue = lower 8 bits
#assemble RGB as 3 byte list
#data follows

(value, reps, count=1) :

"sends a 16-bit pixel word to display, with optional repeat"

valHi = value >> 8
vallLo = value & OxFF
RGB = [valHi,valLo]

SetPin (DC, 1)

for a in range (count) :
spi.writebytes (RGB*reps)

#each pixel is two bytes

#assemble RGB as 2 byte list
#data follows

There are 128x160 = 20,480 pixels on the TFT screen. Clearing the screen using the old
routine would require 20,480 x 3 = 61,440 bytes to be sent to the TFT controller. The new
routine requires only 40,960 bytes. Each screen refresh is 33% faster.

3) PIXELS

In Part 1 the DrawPixel routine was introduced. Drawing single pixels is the basis for other
graphics routines. This routine should be as efficient as possible. Here is an updated version
of the original code:

def DrawPixel (x,y,color):
"draws a pixel on the TFT display"
SetAddrWindow (x, v, X, V) #set display window to x,y
Command (RAMWR, color>>8, color&0OxFF) #send pixel color (2 bytes)

There isn’t much to simplify: set the drawing window to a single x,y location, and send the
pixel color as two bytes. We can make it a little more efficient, though, by inlining the code.
Python, as an interpreted language, uses processing time for each procedure call. Inlining
removes as many procedure calls as possible. Compare the above code with the following:

def FastDrawPixel (x,y,color):
"draws a pixel on the TFT display; increases speed by inlining"
GPIO.output (DC,0) #set display window to x,y
spi.writebytes ([CASET])
GPIO.output (DC, 1)
spi.writebytes ([0,x,0,x])
GPIO.output (DC,0)
spi.writebytes ([RASET])
GPIO.output (DC, 1)
spi.writebytes ([0,v,0,v])
GPIO.output (DC,0) #send pixel color (2 bytes)
spi.writebytes ([RAMWR])
GPIO.output (DC, 1)
spi.writebytes ([color>>8, color&OxFF])

Notice how the routine has been reduced to a series of low-level 10 calls. In testing, this
routine is 10-20% faster — despite increasing the procedure length from 2 to 12 statements.
The tradeoff is reduced code readability.

4) LINES

The simplest line to draw is a horizontal line along the x axis. For example, from x=3 to x=10.
The length of this line is the difference, 10-3 = 7. Add one pixel so that the start-pixel and end-
pixel are both included. The total length is 8 pixels.

I I (O B IR (I e e

To code in python, set up a display window between the two positions on the x axis:

def HLine (x0,x1,y,color):
"draws a horizontal line in given color"
length = x1-x0+1
SetAddrWindow (x0, v, x1,vy)
WriteBulk (color, length)

Vertical lines are exactly the same, swapping the x and y axes.

def VLine (x,y0,yl,color):
"draws a vertical line in given color"
height = yl-y0+1
SetAddrWindow (x, y0,x,yl)
WriteBulk (color,height)

For all other lines we can use the high-school algebra formula, y=mx+b, where m is the slope
of the line. And the slope is Ay/Ax, or (y1-y0)/(x1-x0). The value of b, the y-intercept, equals
yO0 if we substitute x-x0 for x. (Graphically, this is equivalent to moving the line leftward by x0
pixels.) The following python code should work:

slope = float (yl-y0)/ (x1-x0)
for x in range (x0,x1+1):
y = slope* (x-x0) + vyO0
DrawPixel (x,int (y),color)

In the FOR loop, y is calculated for each x, and the pixel is drawn at x,y. Try it! You will find
that it works well for lines with a shallow slope (m<1). But for steeper lines, y changes more
rapidly than x, and pixels will get ‘dropped’ if we are counting by x units. One solution for
steeper lines is to count by y units instead of X, like this:

if (slope>1):
for y in range(y0,yl+1):
x = (y-y0)/slope + x0
DrawPixel (int (x),y,color)

In the source code | combined these into a single Line() routine.

5) CIRCLES

The algebraic equation for a circle is x* + y* = r*, where r is
the radius. It’'s easiest to think of the center of circle at the

(0,0) origin. For example, here is the graph of x* + y* = 4. 3t
The radius, the distance from the origin, is 2.
To create a filled circle, let’s do the right half of the circle /T

value we will draw a vertical line from +y to —y, shown as a

first, starting from x=0 and ending with x=2. For each x 43 l}J/u 3 4
ERA

red line on the graph, where y is calculated from the circle -
equation. The following Python code will work: Al

r2 = radius * radius

for x in range (radius) :
y = int (sgrt(r2-x*x))
VLine (x,y,-y,color)

This code creates the right half of the circle. Fortunately the left half of the circle is a mirror
image. All we need to add is a second vertical line at —x for each +x:

r2 = radius * radius

for x in range (radius) :
y = int (sgrt(r2-x*x))
VLline (x,y,-y,color)
VlLine (-x,y,-y,color)

Finally, we must translate this circle from (0,0) to any arbitrary xPos,yPos position. To do this,
substute (xPos+x) for x and (yPos+y) for y in the VLine calls. See the source code for the
completed FillCircle routine.

To create non-filled circles, use DrawPixel instead of VLine, drawing only the ‘ends’ of the line:

r2 = radius * radius
for x in range (radius) :
y = int (sgrt(r2-x*x))

DrawPixel (x,y,color) #Vline (x,y,-y,color)

DrawPixel (x,-y,color)

DrawPixel (-x,y,color) #Vline (-x,y,-y,color)
(

DrawPixel (-x,-y,color)

You can half the number of square root calculations, exploiting the symmetry between the top
and bottom halves of the circle. But it doubles the number of DrawPixel calls. Which is
faster? See the source code for the completed Circle() routine.

6) TESTING IT ALL

The code to graphically test these routines is longer than the routines themselves. The test
suite contains 9 different tests for screen fills, pixels, lines, and circles. Each test takes 0-10
seconds, for a total runtime of about 60 seconds. Each test will vary slightly in length from run
to run, because we are running in a multitasking environment. Linux preempts our code from
time to time. Nevertheless, you can modify the code and immediately see if it becomes more
or less efficient. You can find ways to improve the simple code in this graphics library. Have
fun!

In Part 4 of this series we’ll add text to our display.

http://w8bh.net/pi/TFT4.pdf

7) PYTHON SCRIPT for TFT DISPLAY, PART 3:

#!/usr/bin/python

SRR R RS SRR R R R R R R

A Python script for controlling the Adafruit 1.8" TFT LCD module
from a Raspbery Pi.

Author : Bruce E. Hall, W8BH <bhall66@gmail.com>

Date : 21 Feb 2014

This module uses the ST7735 controller and SPI data interface
PART 3 --- GRAPHICS

For more information, see w8bh.net

#
#
#
#
#
#
#
#
#
#
#
#
#

S R

import RPi.GPIO as GPIO

import time

import spidev #hardware SPI
from random import randint

from math import sqgrt

#TFT to RPi connections

PIN TFT RPi

1 backlight 3v3

2 MISO <none>

3 CLK SCLK (GPIO 11)
4 MOSI MOSI (GPIO 10)
5 CS-TFT GND

6 CS-CARD <none>

7 D/C GPIO 25

8 RESET <none>

9 VCC 3V3

10 GND GND

DC = 25

XSIZE = 128

YSIZE = 160

XMAX = XSIZE-1

YMAX = YSIZE-1

X0 = XSIZE/2

Y0 = YSIZE/2

#Color constants

BLACK = 0x0000
BLUE = 0x001F
RED = 0xF800
GREEN = 0x0400
LIME = 0x07EO0
CYAN = 0x07FF
MAGENTA = OxF81F
YELLOW = OxFFEO
WHITE = OxFFFF

PURPLE = 0x8010

NAVY = 0x0010

TEAL = 0x0410
OLIVE = 0x8400
MAROON = 0x8000
SILVER = 0xC618
GRAY = 0x8410
COLORSET = [BLACK,BLUE,RED,GREEN,LIME,CYAN, MAGENTA, YELLOW,

WHITE, PURPLE, NAVY, TEAL, OLIVE, MAROON, SILVER, GRAY]

#TFT display constants
SWRESET = 0x01

SLPIN = 0x10
SLPOUT = 0x11
PTLON = 0x12
NORON = 0x13
INVOFF = 0x20
INVON = 0x21
DISPOFF = 0x28
DISPON = 0x29
CASET = 0x2A
RASET = 0x2B
RAMWR = 0x2C
RAMRD = 0x2E
PTLAR = 0x30
MADCTL = 0x36
COLMOD = 0x3A
FRMCT1 = 0xBl
FRMCT2 = 0xB2
FRMCT3 = 0xB3
INVCTR = 0xB4
DISSET = 0xB6
PWRCT1 = 0xCO
PWRCT2 = 0xCl
PWRCT3 = 0xC2
PWRCT4 = 0xC3
PWRCT5 = 0xC4
VMCTR1L = 0xC5
PWRCT6 = 0xFC
GAMCTP = O0xEO
GAMCTN = 0xEl

FHEH A o
#
Low-level routines
#
#

def SetPin (pinNumber,value) :
#sets the GPIO pin to desired value (l=on,0=0ff)
GPIO.output (pinNumber, value)

def InitGPIO():
GPIO.setmode (GPIO.BCM)
GPIO.setwarnings (False)
GPIO.setup (DC,GPIO.OUT)

def InitSPI():
"returns an opened spi connection to device(0,0) in mode 0"
spiObject = spidev.SpiDev ()
spiObject.open (0, 0)
spiObject.mode = 0

return spiObject

SR i

#
#
#
#
def

def

def

def

def

def

ST7735 TFT controller routines:

WriteByte (value) :
"sends an 8-bit value to the display as data"
SetPin (DC, 1)
spi.writebytes ([value])

WriteWord (value):
"sends a 1l6-bit value to the display as data"
SetPin (DC, 1)
spi.writebytes ([value>>8, value&0OxFF])

Command (cmd, *bytes):
"Sends a command followed by any data it requires"

SetPin (DC, 0) #command follows

spi.writebytes ([cmd]) #send the command byte

if len(bytes)>0: #is there data to follow command?
SetPin (DC, 1) #data follows

spi.writebytes(list (bytes))#send the data bytes

InitDisplay() :
"Resets & prepares display for active use."
Command (SWRESET) #reset TFT controller
time.sleep(0.2) #wait 200mS for controller init
Command (SLPOUT) #wake from sleep
Command (COLMOD, 0x05) #set color mode to 16 bit
Command (DISPON) #turn on display

SetAddrWindow (x0,yv0,x1,yl) :
"sets a rectangular display window into which pixel data is placed"
Command (CASET,0,x0,0,x1) #set column range (x0,x1)
Command (RASET,0,y0,0,vl) #set row range (y0,yl)

WriteBulk (value,reps,count=1):
"sends a 16-bit pixel word many, many times using hardware SPI"

"number of writes = reps * count. Value of reps must be <= 2048"
SetPin (DC, 0) #command follows

spi.writebytes ([RAMWR]) #issue RAM write command

SetPin (DC, 1) #data follows

valHi = value >> 8 #each pixel is two bytes

vallo = value & OxFF

byteArray = [valHi,vallo]*reps #create buffer of multiple pixels

for a in range (count) :
spi.writebytes (byteArray) #send this buffer multiple times

iiiiiiidiiddiiddidididididiidiiiidiididiiddididddididddddddidddddddddddddddddddaddaai

#
#
#
#

def

Graphics routines:

DrawPixel (x,y,color) :
"draws a pixel on the TFT display"
SetAddrWindow (x, v, X, Vy)
Command (RAMWR, color>>8, color&0OxFF)

def FastDrawPixel (x,y,color):
"draws a pixel on the TFT display; increases speed by inlining"
GPIO.output (DC,0)
spi.writebytes ([CASET])
GPIO.output (DC, 1)
spi.writebytes ([0,x,0,x])
GPIO.output (DC,0)
spi.writebytes ([RASET])
GPIO.output (DC, 1)
spi.writebytes ([0,y,0,v])
GPIO.output (DC,0)
spi.writebytes ([RAMWR])
GPIO.output (DC, 1)
spi.writebytes ([color>>8, color&0xFF])

def HLine (x0,x1,y,color):
"draws a horizontal line in given color"
width = x1-x0+1
SetAddrWindow (x0, v, x1,vy)
WriteBulk (color,width)

def VLine (x,y0,yl,color):
"draws a verticle line in given colozr"
height = yl-yO0+1
SetAddrWindow (x,v0,x,yl)
WriteBulk (color,height)

def Line (x0,y0,x1,yl,color):
"draws a line in given color"
if (x0==x1):
VLine (x0,y0,yl,color)
elif (y0==yl):
HLine (x0,x1,y0,color)
else:
slope = float(yl-y0)/ (x1-x0)
if (abs(slope)< 1):
for x in range (x0,x1+1):
y = (x-x0)*slope + yO0
FastDrawPixel (x, int (y+0.5),color)
else:
for y in range(y0,yl+1):
x = (y-y0)/slope + x0
FastDrawPixel (int (x+0.5),y,color)

def DrawRect (x0,y0,x1,yl,color):
"Draws a rectangle in specified color"
HLine (x0,x1,y0,color)
HLine (x0,x1,yl,color)
VLine (x0,y0,yl,color)
VLline (x1,y0,yl,color)

def FillRect (x0,y0,x1,yl,color):
"fills rectangle with given color"
width = x1-x0+1
height = yl-yO0+1
SetAddrWindow (x0,y0,x1,y1l)
WriteBulk(color,width,height)

def FillScreen(color):
"Fills entire screen with given color"
FillRect (0,0,127,159,color)

def ClearScreen():
"Fills entire screen with black"
FillRect (0,0,127,159,BLACK)

def Circle (xPos,yPos,radius,color):

"draws circle at x,y with given radius & color"

xEnd = int (0.7071*radius) +1

for x in range (xEnd) :
y = int (sqgrt(radius*radius - x*x))
FastDrawPixel (xPos+x, yPos+y,color)
FastDrawPixel (xPos+x, yPos-y,color)
FastDrawPixel (xPos-x, yPos+y,color)
FastDrawPixel (xPos-x, yPos-y,color)
FastDrawPixel (xPos+y, yPos+x,color)
FastDrawPixel (xPos+y, yPos-x,color)
FastDrawPixel (xPos-y, yPos+x,color)
FastDrawPixel (xPos-y, yPos-x,color)

def FillCircle (xPos,yPos,radius,color):
"draws filled circle at x,y with given radius & color"
r2 = radius * radius
for x in range (radius):
y = int (sgrt(r2-x*x))
y0 = yPos-y
yl = yPos+y
VLine (xPos+x,vy0,yl,color)
VLine (xPos-x,y0,yl,color)

FHHH A R
#
Testing routines:
#
#

def PrintElapsedTime (function,startTime) :
"Formats an output string showing elapsed time since function start"
elapsedTime=time.time () -startTime

print "%15s: %8.3f seconds" % (function,elapsedTime)
time.sleep (1)

def ScreenTest () :
"Measures time required to fill display twice"
startTime=time.time ()
FillScreen (LIME)
FillScreen (MAGENTA)
PrintElapsedTime ('ScreenTest', startTime)

def RandRect () :
"Returns four integers x0,y0,x1,yl as screen rect coordinates"
x1 = randint (1,100)
yl = randint(1,150)
dx = randint (30, 80)
dy = randint (30,80)

x2 = x1 + dx
if x2>126:

x2 = 126
y2 =yl + dy
if y2>158:

y2 = 158

return x1,yl,x2,y2

def RandColor():
"Returns a random color from BGR565 Colorspace"

index = randint (0, len (COLORSET)-1)
return COLORSET [index]

def RectTest (numCycles=50) :
"Draws a series of random open rectangles"
ClearScreen ()
startTime = time.time ()
for a in range (numCycles) :
x0,vy0,x1,yl = RandRect ()
DrawRect (x0,y0,x1,yl,RandColor())
PrintElapsedTime ('RectTest',startTime)

def FillRectTest (numCycles=70) :
"draws random filled rectangles on the display"
startTime=time.time ()
ClearScreen ()
for a in range (numCycles) :
x0,vy0,x1, yl=RandRect ()
FillRect (x0,y0,x1,y1l,RandColor())
PrintElapsedTime ('FillRect', startTime)

def LineTest (numCycles=50) :
"Draw a series of semi-random lines on display"
ClearScreen ()
startTime=time.time ()
for a in range (numCycles) :
Line (10,10, randint (20,126),randint (20, 158) , YELLOW)

Line (120,10, randint (2,126),randint (10,158), CYAN)
PrintElapsedTime ('LineTest',startTime)

def PixelTest (color=BLACK, numPixels=5000) :

"Writes random pixels to the screen"
ClearScreen ()

startTime = time.time ()
for i in range (numPixels) :
xPos = randint (1,127)
yPos = randint(1,159)
DrawPixel (xPos, yPos, LIME)
PrintElapsedTime ('PixelTest',startTime)

def FastPixelTest (color=BLACK, numPixels=5000) :
"Writes random pixels to the screen"
ClearScreen ()

startTime = time.time ()
for i in range (numPixels) :
xPos = randint (1,127)
yPos = randint(1,159)
FastDrawPixel (xPos, yPos, YELLOW)
PrintElapsedTime ('FastPixelTest', startTime)

def MoireTest () :
"Draws a series of concentric circles"
ClearScreen ()
startTime = time.time ()
for radius in range(6,60,2):
Circle(X0,Y0, radius, YELLOW)
PrintElapsedTime ('MoireTest',startTime)

def CircleTest (numCycles=40) :
"draw a series of random circles"
ClearScreen ()
startTime = time.time ()
for a in range (numCycles) :

X

randint (30, 90)
y = randint (30,130)

radius = randint (10, 40)
Circle (x,y,radius,RandColor())
PrintElapsedTime ('CircleTest',startTime)

def FillCircleTest (numCycles=40) :

"draw a series of random filled circles"

ClearScreen ()
startTime = time.time ()

for a in range (numCycles) :
x = randint (30, 90)
y = randint (30,130)

radius = randint (10, 40)
FillCircle (x,y,radius,RandColor())
PrintElapsedTime ('FillCircleTest',startTime)

def RunTests () :

"run a series of graphics test routines & time them"

startTime = time.time ()
ScreenTest ()

RectTest ()
FillRectTest ()
PixelTest ()
FastPixelTest ()
LineTest ()

MoireTest ()
CircleTest ()
FillCircleTest ()

#keep track of test duration

#fill entire screen with color
#draw rectangles

#draw filled rectangles

#draw 5000 random pixels

#same as above, w/ modified routine
#draw straight lines

#draw concentric circles

#draw random circles

#draw filled circles

PrintElapsedTime ('Full Suite',startTime)

FHEFE SRR R ARSI S R S R S

#
Main Program
#

print "Adafruit 1.8 TFT display demo with hardware SPI"

spi = InitSPI()
InitGPIO()
InitDisplay ()
RunTests ()
spi.close()
print "Done."

#initialize SPI interface
#initialize GPIO interface
#initialize TFT controller
#run suite of graphics tests
#close down SPI interface

END #### Attt A A R A

