

 Beginner’s

Guide

to the

PI MATRIX

 Part 3 :

The Toolkit

by
Bruce E. Hall, W8BH

1) INTRODUCTION

In Part 1 and Part 2 of this series, we looked at how to build this great little kit, the Pi Matrix,
and how to program simple display routines in Python. In this tutorial we’ll develop those
routines a bit further, giving us a whole toolkit of interesting displays to choose from.

2) COMMERCIALWARE vs. HOBBYWARE

This is an educational hobby for me, and has been a great way to learn about the
Raspberry Pi and about Python programming. But I am not an expert Python programmer
by any means. My coding style – if I have a coding style – comes from other languages
and is not very ‘Pythonic’. My use of whitespace is inconsistent. My procedure and
variable naming is inconsistent. But I enjoy learning by doing, and I hope you do, too!

3) SIMPLIFY, SIMPLIFY

There are all sorts of ways to encapsulate data and code. We break it up into files. We
mold it into structures and functions. A great object-oriented way to think about this project
is to create a ‘matrix’ class. This object would include data & functions relevant to the
raspberry pi, and insulate the user from the messy lower level details. Great idea – go for it!
I decided to take a simpler approach here, and just make some useful functions that anyone
can grab and add to a project.

Let’s start with some low-level routines that write data to the MCP27013 chip. In Part 2 we
made a column-writing routine like this: write a routine to turn on a single column. To turn
on the first column, we just need to turn on the lowest bit. This is easy: just write the value
of ‘00000001’ (0x01) to Port A like this:

http://w8bh.net/pi/PiMatrix1.pdf
http://w8bh.net/pi/PiMatrix2.pdf

def SetColumn (col):

bus.write_byte_data(ADDR,PORTB,0x00)
 bus.write_byte_data(ADDR,PORTA,0x80>>column)

All of the routines that write to the chip will look like this, writing byte values to one of more
chip registers. They work fine as is. I decided to simplify them just a bit, taking out the
repetitive parts like this:

def Write (register, value):
bus.write_byte_data(ADDR, register, value)

 def SetColumn (col):
 Write (PORTB, 0x00)
 Write (PORTA, 0x80>>column)

We don’t need to do this, but it moves all of the I2C calls to a single routine and removes
the possibility of sending some of our data to the wrong I2C bus address. The simplest
routine is one that writes data to the LED column and row inputs. Once we write that, we
can further simplify SetColumn like this:

def WriteToLED (rowPins, colPins):
Write (PORTA, colPins)
Write (PORTB, rowPins)

 def SetColumn (col):
 WriteToLED (0x00, 0x80>>column)

Again, this abstraction is not necessary but helpful: once WriteToLED is defined, we no
longer have to remember whether columns go on PORTA or PORTB. Try it now and see!

4) PATTERNS

We still have to remember that rows are
active LOW, and that the column bits are
reversed. Wouldn’t it be nice to call a
function with first row bit and first column bit
set, and have the top/left LED light up? It’s
easy! We’ll use what we know, and then
never have to remember it again:

def SetPattern (rows, columns):
WriteToLED(~rows, ReverseBits(columns))

The tilde(~) negates to row bits, making them all active LOW. And we’ll need to write a
routine to reverse the order of the column bits. But that’s all it takes. For example, suppose

 C0 C1 C2 C3 C4 C5 C6 C7

R0

R1 X X X

R2 X X X

R3

R4

R5

R6

R7

we want to make a small 2x2 square as shown above. We need to set row bits 1 &2
(0b00000110 = 0x02), and column bits 1, 2, and 3. (0b00001110 = 0x0E). Try calling
SetPattern with some different bit patterns on the rows and columns to see what you can
make.

5) ORIENTATION

The cables around my Pi hold it in an upside-down orientation. By that, I mean that the
USB ports are on the left, the power is on the right, and the GPIO pins are facing me on the
bottom. I was constantly turning my head around, trying to see if the correct LEDs were lit.
Either I could turn the whole contraption around (not so easy), or I could rewrite my code so
that it displayed upside down. Necessity is the mother of invention, so what would it take to
flip the display?

Things get a little confusing here, I admit. But to flip a display, up means down and left
means right. What? Something in the top-left, when flipped, is now bottom-right. OK, let’s
try reversing the row and column bits, and see if it works:

 def SetPattern180 (rows,columns):
 SetPattern(ReverseBits(rows), ReverseBits(columns))

Hey, it works! We are on a roll. While we are at it, can we also change the orientation

sideways left and right (90 and 270 degrees)? Sure thing: swap rows and columns, and

reverse one of them. All of this reversing gets a bit cumbersome, since we are already

reversing the columns in our original SetPattern routine. One solution combines both

operations in a new SetPattern, like this:

def SetPattern (rows,columns,orientation=0):
 if orientation==0:
 WriteToLED(~rows,ReverseBits(columns))
 elif orientation==90:
 WriteToLED(~columns,rows)
 elif orientation==180:
 WriteToLED(~ReverseBits(rows),columns)
 elif orientation==270:
 WriteToLED(~ReverseBits(columns),ReverseBits(rows))

Our routine bulked up a bit, but now we can use the Pi at any angle. Notice the default

value of 0 in the definition: we don’t even need to specify any orientation at all, if the Pi

happens to be right-side up. Call this routine with something other than the four values,

and it’s not going to work. It’s hobby-ware!

6) BACK TO BASICS

Now that we can create any pattern, in positive logic, in any orientation, it is much easier to

set an individual LEDs, columns, and rows.

def SetLED (row,col):
 SetPattern(1<<row, 1<<col)

def SetColumn (row,col):
 SetPattern(0xFF, 1<<col)

def SetRow (row,col):
 SetPattern(1<<row, 0xFF)

On my upside-down board, I set the orientation in SetPattern to 180 instead of 0.

7) PLAY TIME!

In the last part we created some test patterns to exercise our LED matrix. Here are a few

more. One of my favorites is the ‘cylon’. The Cylon, a creature from the TV series

Battlestar Galactica, had a red eye that shifted position back and forth across its face.

Some of you may also remember KITT in Knight Rider that used the same effect.

def MultiRowCylon (pattern,numCycles):
 for count in range(0, numCycles):
 for col in range(0,7):
 SetPattern(pattern, 1<<col)
 time.sleep(delay)
 for col in range(7,0,-1):
 SetPattern(pattern, 1<<col)
 time.sleep(delay)

def SingleRowCylon (row,numCycles):
 #Side-to-side LED chaser, single row
 MultiRowCylon(1<<row, numCycles)

def AllRowCylon (numCycles):
 #Side-to-side LED chaser using all rows
 MultiRowCylon(0xFF, numCycles)

If you just have a row of LEDs, you can only do a single
row effect. But we have the mighty Pi Matrix, so we can do
cylon all the rows, or any combination in between. There
isn’t much to the code: just pick a row pattern, and then
oscillate the columns back and forth.

You can do really fun animations just by experimenting and trying different patterns. Check out

the YouTube video I created at http://youtu.be/VbPBNmlGy34

http://youtu.be/VbPBNmlGy34
http://pubpages.unh.edu/~dle55/IMAGES/cylonwarcenturionbig.jpg
http://www.google.com/url?sa=i&source=images&cd=&cad=rja&docid=dLxLZ9fPislj3M&tbnid=_9CdSx0nbToThM:&ved=0CAgQjRwwAA&url=http://www.navtones.com/garmin/kitt-voice-for-garmin-gps.html&ei=9GQkUeC8MImPqwGcxYCYBQ&psig=AFQjCNE_nlSKM4nfxsjmMp9kjJhWnr6EtQ&ust=1361426036838719

8) PYTHON SCRIPT for PART3:

#!/usr/bin/python

Matrix3: Library of Pi Matrix display routines

This Python script contains a bunch of routines for driving

the Pi Matrix & creating interesting displays.

Online References: w8bh.net & mypishop.com

YouTube video at http://youtu.be/VbPBNmlGy34

Author: Bruce E. Hall <bhall66@gmail.com>

Date : 20 Feb 2013

import smbus #gives us a connection to the I2C bus

import time #for timing delays

import random #random number generator

#Definitions for the MCP23017 chip

ADDR = 0x20 #The I2C address of our chip

DIRA = 0x00 #PortA I/O direction, by pin. 0=output, 1=input

DIRB = 0x01 #PortB I/O direction, by pin. 0=output, 1=input

PORTA = 0x12 #Register address for PortA

PORTB = 0x13 #Register address for PortB

ORIENTATION = 180 #default viewing angle for the pi & matrix

 #set this value according to your viewing angle

 #values are 0 (power jack on left)

 # 90 (power jack on bottom)

 # 180 (power jack on right)

 # 270 (power jack on top)

rows = 0x00 #starting pattern is (0,0) = all LEDS off

columns= 0x00

delay = 0.08 #time delay between LED display transitions

 #smaller values = faster animation

Lower level routines for bit-manipulation.

Nothing here relates to our snazzy Pi Matrix.

def ReverseBits (byte):

 #reverse the bit order in the byte: bit0 <->bit 7, bit1 <-> bit6, etc.

 value = 0

 currentBit = 7

 for i in range(0,8):

 if byte & (1<<i):

 value |= (0x80>>i)

 currentBit -= 1

 return value

def ROR (byte):

 #perform a 'rotate right' command on byte

 #bit 1 is rotated into bit 7; everything else shifted right

 bit1 = byte & 0x01 #get right-most bit

 byte >>= 1 #shift right 1 bit

 if bit1: #was right-most bit a 1?

 byte |= 0x80 #if so, rotate it into bit 7

 return byte

def ROL (byte):

 #perform a 'rotate left' command on byte

 #bit 7 is rotated into bit 1; everything else shifted left

 bit7 = byte & 0x080 #get bit7

 byte <<= 1 #shift left 1 bit

 byte &= 0xFF #only keep 8 bits

 if bit7: #was bit7 a 1?

 byte |= 0x01 #if so, rotate it into bit 1

 return byte

Lower Level LED Display routines.

These write data directly to the Pi Matrix board

def Write (register, value):

 #Abstraction of I2C bus and the MCP23017 chip

 #Call with the chip data register & value pair

 #The chip address is constant ADDR (0x20).

 bus.write_byte_data(ADDR,register,value)

def EnableLEDS ():

 #Set up the 23017 for 16 output pins

 Write(DIRA, 0x00) #all zeros = all outputs on PortA

 Write(DIRB, 0x00) #all zeros = all outputs on PortB

def DisableLEDS ():

 #Set all outputs to high-impedance by making them inputs

 Write(DIRA, 0xFF); #all ones = all inputs on PortA

 Write(DIRB, 0xFF); #all ones = all inputs on PortB

def TurnOffLEDS ():

 #Clear the matrix display

 Write(PORTA, 0x00) #set all columns low

 Write(PORTB, 0x00) #set all rows low

def TurnOnAllLEDS ():

 #Turn on all 64 LEDs

 Write(PORTA, 0xFF) #set all columns high

 Write(PORTB, 0x00) #set all rows low

def WriteToLED (rowPins,colPins):

 #set logic state of LED matrix pins

 Write(PORTA, 0x00) #turn off all columns; prevent ghosting

 Write(PORTB, rowPins) #set rows first

 Write(PORTA, colPins) #now turn on columns

More low-level routines, saved for learning purposes.

def FastSetLED (row,col):

 #turn on an individual LED at (row,col). All other LEDS off.

 #ignores orientation. Unless speed is required, use SetLED instead

 bus.write_byte_data(ADDR,PORTA,0x80>>col)

 bus.write_byte_data(ADDR,PORTB,~(1<<row))

def FastSetColumn (col):

 #turn on all LEDs in the specified column. Expects input of 0-7.

 #ignores orientation. Unless speed is required, use SetColumn.

 bus.write_byte_data(ADDR,PORTB,0x00)

 bus.write_byte_data(ADDR,PORTA,0x80>>col)

def FastSetRow (row):

 #turn on all LEDs in the specified row. Expects input of 0-7.

 #ignores orientation. Unless speed is required, use SetRow.

 bus.write_byte_data(ADDR,PORTA,0xFF)

 bus.write_byte_data(ADDR,PORTB,~(1<<row))

Intermediate-level routines for

LED Pixel, Row, Column, and Pattern display.

Set constant ORIENTATION to 0,90,180,270 according to Matrix posn.

def SetPattern (rowPattern,colPattern,orientation=ORIENTATION):

 #Applies given row & column patterns to the matrix.

 #For columns, bit 0 is left-most and bit 7 is at far right.

 #For rows, bit 0 is at the top and bit 7 is at the bottom.

 #Example: (0x07,0x03) will set 3 row bits & 2 columns bits,

 #forming a rectagle of 6 lit LEDS in upper left corner of

 #the matrix, three rows tall and two columns wide.

 #Why? 0x07 = 0b00000111 (three lower row bits set).

 # 0x03 = 0b00000011 (two lower column bits set).

 global rows, columns #save current row/column

 rows = rowPattern

 columns = colPattern

 if orientation==0:

 WriteToLED(~rows,ReverseBits(columns))

 elif orientation==90:

 WriteToLED(~columns,rows)

 elif orientation==180:

 WriteToLED(~ReverseBits(rows),columns)

 elif orientation==270:

 WriteToLED(~ReverseBits(columns),ReverseBits(rows))

def SetLED(row,col):

 #turn on an individual LED at (row,col). All other LEDS off.

 #expects inputs of (0,0) to (7,7).

 SetPattern(1<<row,1<<col)

def SetColumn(col):

 #turn on all LEDs in the specified column. Expects input of 0-7.

 SetPattern(0xFF,1<<col)

def SetRow(row):

 #turn on all LEDs in the specified row. Expects input of 0-7.

 SetPattern(1<<row,0xFF)

def MoveDown():

 #shifts entire display downward by one pixel

 SetPattern(rows<<1,columns)

def MoveUp():

 #shifts entire display downward by one pixel

 SetPattern(rows>>1,columns)

def MoveRight():

 #shifts entire display one pixel to the right

 SetPattern(rows,columns<<1)

def MoveLeft():

 #shifts entire display one pixel to the left

 SetPattern(rows,columns>>1)

Higher-level routines for playing with the Pi Matrix board.

Each routine does a simple display animation, calling

one or more of the low-level routines above.

Set global variable DELAY to change animation speed (default 0.08)

def ShowRoutine (name):

 #display the routine name to console, file, or wherever you want.

 #this is useful for creating a log of your display.

 print " ",name

def FlashLEDS (delay):

 #Flash all of the LEDS on/off for the specified time

 TurnOnAllLEDS()

 time.sleep(delay)

 TurnOffLEDS()

 time.sleep(delay)

def MultiRowCylon (pattern=0x55,numCycles=4):

 #Do a side-to-side LED chaser using multiple rows

 ShowRoutine("%d Row Cylon %x" % (numCycles,pattern))

 for count in range(0,numCycles):

 for col in range(0,8):

 SetPattern(pattern,1<<col)

 time.sleep(delay)

 for col in range(6,0,-1):

 SetPattern(pattern,1<<col)

 time.sleep(delay)

def SingleRowCylon (row=0,numCycles=4):

 #Do a side-to-side LED chaser on a single row

 MultiRowCylon(1<<row,numCycles)

def AllRowCylon (numCycles=4):

 #Do a side-to-side LED chaser using all rows

 MultiRowCylon(0xFF,numCycles)

def MultiColumnCylon (pattern=0x55,numCycles=4):

 #Do a back-and-forth LED chaser on multiple columns

 ShowRoutine("%d Column cylon %x" % (numCycles,pattern))

 for count in range(0,numCycles):

 for row in range(0,8):

 SetPattern(1<<row,pattern)

 time.sleep(delay)

 for row in range(6,0,-1):

 SetPattern(1<<row,pattern)

 time.sleep(delay)

def MultiBarCylon (pattern=0x77,numCycles=4):

 #Do a back-and-forth LED chaser on multiple columns

 ShowRoutine("%d Bar cylon %x" % (numCycles,pattern))

 for count in range(0,numCycles):

 for row in range(0,8):

 SetPattern(~1<<row,pattern)

 time.sleep(delay)

 for row in range(6,0,-1):

 SetPattern(~1<<row,pattern)

 time.sleep(delay)

def SingleColumnCylon (col=0,numCycles=4):

 #Do an up-and-down LED chaser on a single column

 MultiColumnCylon(1<<col,numCycles)

def AllColumnCylon (numCycles=4):

 #Do an up-and-down LED chaser using all columns

 MultiColumnCylon(0xFF,numCycles)

def Marquis (indent=0,numCycles=8,delay=0.02):

 #do a LED chaser around perimeter of matrix

 ShowRoutine("%d Marquis #%d at %g" % (numCycles,indent,delay))

 for count in range(0,numCycles):

 for col in range(0+indent,8-indent):

 SetLED(0+indent,col)

 time.sleep(delay)

 for row in range(1+indent,7-indent):

 SetLED(row,7-indent)

 time.sleep(delay)

 for col in range(7-indent,-1+indent,-1):

 SetLED(7-indent,col)

 time.sleep(delay)

 for row in range(6-indent,0+indent,-1):

 SetLED(row,0+indent)

 time.sleep(delay)

def RotateDisplay (direction, numCycles=32):

 #rotates current display in desired direction

 global rows,columns

 ShowRoutine("%d Rotate display %s" %(numCycles,direction))

 time.sleep(delay) #initial pattern = first cycle

 for count in range(0,numCycles):

 if direction=="down":

 rows = ROL(rows)

 elif direction=="up":

 rows = ROR(rows)

 elif direction=="right":

 columns = ROL(columns)

 elif direction=="left":

 columns = ROR(columns)

 SetPattern(rows,columns)

 time.sleep(delay)

def RandomPatterns (numCycles=32):

 #puts random display patterns on the LED matrix

 ShowRoutine("%d Random Patterns" % numCycles)

 delay = 0.05

 for count in range(0,numCycles):

 rowPattern = random.randint(0,255)

 colPattern = random.randint(0,255)

 SetPattern(rowPattern,colPattern)

 time.sleep(delay)

def RandomPixels (numCycles=128):

 #puts random display patterns on the LED matrix

 ShowRoutine("%d Random Pixels" % numCycles)

 delay = 0.02

 for count in range(0,numCycles):

 row = random.randint(0,7)

 col = random.randint(0,7)

 SetLED (row,col)

 time.sleep(delay)

def ShowEyes ():

 SetPattern(0x18,0x66)

def BlinkEyes (numCycles=8,delay=0.5):

 for count in range(0,numCycles):

 ShowEyes()

 time.sleep(delay)

 TurnOffLEDS()

 time.sleep(delay *0.2)

def Blink (numCycles=8,delay=0.5):

 #flashes current display off, then back on

 for count in range(0,numCycles):

 time.sleep(delay)

 DisableLEDS()

 time.sleep(delay)

 EnableLEDS()

def Figure8 (numCycles=4,delay=0.05):

 ShowRoutine("%d Figure8" % numCycles)

 SetPattern(3,3)

 time.sleep(delay*3)

 for cycle in range(0,numCycles):

 for count in range(0,6):

 MoveRight()

 time.sleep(delay)

 for count in range(0,6):

 MoveDown()

 MoveLeft()

 time.sleep(delay)

 for count in range(0,6):

 MoveRight()

 time.sleep(delay)

 for count in range(0,6):

 MoveUp()

 MoveLeft()

 time.sleep(delay)

def PawCircle(delay=0.5):

 ShowRoutine("Paw Circle")

 SetPattern(0x33,0x03)

 time.sleep(delay)

 for count in range(0,3):

 MoveRight()

 MoveRight()

 time.sleep(delay)

 SetPattern(0xCC,0xC0)

 time.sleep(delay)

 for count in range(0,3):

 MoveLeft()

 MoveLeft()

 time.sleep(delay)

def Pulse1(numCycles=8,delay=0.50):

 #pulsing animation in corner of display

 ShowRoutine("%d Pulse1" % numCycles)

 for count in range(0,numCycles):

 SetPattern(0x80,0x01)

 time.sleep(0.03)

 SetPattern(0xC0,0x03)

 time.sleep(0.03)

 SetPattern(0xE0,0x07)

 time.sleep(0.03)

 SetPattern(0xC0,0x03)

 time.sleep(0.03)

 SetPattern(0x80,0x01)

 time.sleep(delay-0.12)

def Pulse4(numCycles=8,delay=0.50):

 #pulsing animation in all four display corners

 ShowRoutine("%d Pulse4" % numCycles)

 for count in range(0,numCycles):

 SetPattern(0x81,0x81)

 time.sleep(0.03)

 SetPattern(0xC3,0xC3)

 time.sleep(0.03)

 SetPattern(0xE7,0xE7)

 time.sleep(0.03)

 SetPattern(0xC3,0xC3)

 time.sleep(0.03)

 SetPattern(0x81,0x81)

 time.sleep(delay-0.12)

def RotateBall():

 #draw a 3x3 ball on display & move it around

 ShowRoutine("Rotate Ball")

 SetPattern(0x0E,0x0E)

 RotateDisplay("right")

 RotateDisplay("left")

 RotateDisplay("up")

 RotateDisplay("down")

def MultiplexDisplay (z,count=40):

 # call this routine with Z, the image to display on the matrix

 # Z is a list containing 8 bytes (8x8=64 bits for 64 LEDs)

 # z[0] is data for the top row of the display; z[7] is bottom row.

 # count is number of times to cycle the display

 for count in range(0,count):

 for row in range(0,8):

 SetPattern(1<<row,z[row]) #quickly display each row

def TrySomeRoutines():

 Pulse1()

 Pulse4()

 SingleRowCylon()

 MultiRowCylon()

 AllRowCylon()

 SingleColumnCylon()

 MultiColumnCylon()

 AllColumnCylon()

 Marquis()

 RotateBall()

 Figure8()

 PawCircle()

 RandomPatterns()

 RandomPixels()

Main Program here.

print "Pi Matrix library test starting"

bus = smbus.SMBus(1) #initialize the I2 bus; use '0' for

 #older Pi boards, '1' for newer ones.

EnableLEDS() #initialize the Pi Matrix board

TrySomeRoutines()

DisableLEDS() #dont leave any LEDs on.

print "Done."

