Beginner’s Guide
to the
Pl LCD

Part 4: Graphics

Bruce E. Hall, W8BH

1) INTRODUCTION

In the first three parts of this series, we learned how to display text and simple graphics on
the LCD board (available from mypishop.com). It's time to kick it up a notch, and create a
suite of useful graphics functions. We'll even create a large-digit clock. You may have
purchased either a 16x2 or a 20x4 display with your kit. In this write-up I'll be using the
20x4 display. When it comes to graphics, bigger is better!

2) SIMPLE HORIZONTAL BAR GRAPHS

An important requirement for creating detailed graphics is that the display device is dot-
addressable. In other words, each display pixel can be individually addressed and
programmed, separate from its neighbors. Sadly, our HD44780 controller does not give us
a dot-addressable LCD display. We get only pre-determined characters, plus 8 characters
of our own design. How can we possibly do artwork on that?

Well, we can’t. Go ahead, prove me wrong. Detailed graphics with this LCD module are
devilishly hard to do. But that doesn’t mean we can’t create useful, simpler graphics. Bar
graphs, for example.

First, consider a single, horizontal
bar graph. Here is our 20x4

display, with a horizontal bar that is

12 characters wide. If we need to

display data that over a small
integer range, like 0-15, we can do it by repeating the solid block (OxFF) character for the
desired length. You might code it like this:

http://www.mypishop.com/

def HorizBar (row,startCol, length):

GotoXY (row, startCol) #go to starting position
for count in range (length):
SendByte (0xFF, True) #display bar of desired length

This simple code works, and is surprisingly useful. You aren’t limited to small ranges: just
scale the desired range to 0-15 by the appropriate conversion factor. But your graph will
always look a little coarse and chunky, since there are a limited number of possible data
values/lengths.

3) BETTER HORIZONTAL BAR GRAPHS

The graph will look better if we improve the horizontal resolution. But how? We can get a
five-fold improvement in resolution if we use the simple graphics from Part 3.

0|0|0|0| Considerthe individual character. It contains 40 individual pixel “dots”,
olo|lolo]| arranged in an 8 row, 5 column grid. We can’t access each individual
olololo]| pixel, but we can create custom symbols like this vertical bar. Display this
ololo]|o]| onetothe right of the 12-character bar above, and you've just made a bar
olololo]| oflength12.2!

0/|0]0]|0 , . _ . .
olololo]| Letsmake aset of vertical bar symbols, progressively increasing the
olololo number of columns in the symbol

0.2 0.4 0.6 0.8 1.0

Now we can increment the length of our horizontal bar in fractions of a character, improving
the horizontal resolution of our graph. It's time to code it. First, create the set of symbols,
like we did in part 3:

horizontalBars = [

[0x10, 0Ox10, 0Ox10, Ox10, 0x10, Ox10, 0x10, 0x10], #1 bar
[Ox18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18], #2 bars
[OxlCc, Oxlc, Oxlc, Oxlc, 0Oxlc, Oxlc, Oxl1lC, 0xlC], #3 bars
[Ox1E, Ox1E, Ox1lE, Ox1E, Ox1E, Ox1E, Ox1E, Ox1E], #4 bars
[0x1F, Ox1F, Ox1F, Oxl1F, O0x1F, Oxl1F, 0x1lF, Ox1F] #5 bars

]

Now we need a routine to draw the horizontal bar for a given length. To simplify things, let’s
stay with integer lengths, and give each vertical bar a length of one (instead of 0.2). In this
system our original 12 character bar is 12*5 = 60 units long. Any length can be represented

by a combination of ‘full characters’ which contain 5 bars each, followed by a terminal
character containing less than 5 bars. For example, a bar graph of length 27 will be 5 full
characters (5*5=25), followed by a character containing the last 2 bars:

v
|
|
|
|
|
|

A FE A FE PR Bar of 27 units =

]

I 5 Filled Characters +
I 1 Partially Filled
N Character
L]

]

We can calculate the number of full characters by integer division: length/5. And the
number of bars in the final, partially filled character is just the remainder: length % 5. A
function for writing the horizontal bar sends the required number of solidly-filled characters,
then a single, partially-filled character. Assume that the symbols have previously been
loaded into the character-generator RAM at positions 0 through 4.

def DrawHBar (row, length) :
fullChars = length / 5

bars = length % 5

GotoXY (row, 0) #start at beginning of row

for count in range (fullChars): #full characters sent first
SendByte (4, True)

if bars>0: #final, partially filled character

SendByte (bars-1, True)

The call to SendByte(4,True) sends the fourth symbol in CG-RAM, which is the 5-bar (filled)
character.

4) ANIMATED HORIZONTAL BAR GRAPHS

The graphs are nice, and fun to watch a few times. But looking at fat lines gets dull after a
while. Let’s spice them up a bit, and add some animation like we did in part 3 with the
‘battery charging’ symbol.

To animate the graph, we need two key functions: one to increment the graph length, and
one to decrement it. Then animation becomes the simple task of keeping track of how
many increments/decrements to do. Using a top-down approach, lets write this function
first, and worry about the increment/decrement later.

def AnimatedHBar (row, startCol,newlLength,oldLength=0) :
diff = newLength - oldLength
for count in range(abs(diff)):
if diff>0:
IncrementHBar (row, startCol, oldLength)
oldLength +=1
else:
DecrementHBar (row, startCol,oldLength)
oldLength -=1

time.sleep (ANIMATIONDELAY)

If the new length is greater than the old length, we increment until the new length is
reached. Similarly, if the new length is less than the old length, we decrement. Each time,
wait a fraction of a second for the animation effect.

Incrementing is incredibly simple: just add one bar and display it. The process of setting the
cursor position and displaying a character comes up several times, so | refactored it into a
little helper-function called ShowBars.

def ShowBars (row,col,numBars) :
GotoXY (row, col)
if numBars==0:
SendChar (' ")
else:
SendByte (numBars-1, True)

def IncrementHBar (row, length) :
#increase the number of horizontal bars by one
fullChars = length / 5
bars = length % 5
bars += 1 #add one bar
ShowBars (row, fullChars, bars)

Decrementing is a little trickier, because the number of bars in the final character cannot be
allowed to go below zero . For example, a value of 25 has 5 full characters evenly with no
extra bars. When one is subtracted, and the number of full characters decreases and the
number of bars goes to 4:

def DecrementHBar (row, length) :
#reduce the number of horizontal bars by one
fullChars = length / 5

bars = length % 5
bars -=1
if bars<0:
bars = 4
fullChars -= 1

ShowBars (row, fullChars, bars)

That works, but looks a bit cumbersome. Whenever things look messy, | like to play around
with the code a bit. Sometimes a simpler and more intuitive solution will present itself. In
this case, try doing the length decrement first, and let our integer divide and modulo
functions do all the work:

def DecrementHBar (row, length) :
#reduce the number of horizontal bars by one

length -= 1 #subtract one bar
fullChars = length / 5
bars = length % 5

ShowBars (row, fullChars, bars)

That looks much better. Sometimes you can get ‘stuck’ because of prior assumptions and
decisions. Don’t be afraid of starting over or reworking the code if it doesn’t flow the way
you want.

5) VERTICAL BAR GRAPHS

You can create vertical bar graphs in exactly the same way we did the horizontal ones:
- Create a series of vertical bar symbols
- Write routines for drawing the bar, breaking it down into full characters with a final,
partially filled character
- Write an animation routine, calling on IncrementVBar and DecrementVBar

See the script listing at the end for all of the details. The code is almost exactly the same.

6) BIG CLOCK

| really enjoyed working with the Pi Matrix, because the display is fun to watch. Who
doesn't like blinky LEDs? LCDs have to work harder to get the same WOW factor. | was
wondering what to do for this board, when | came across some images for the “LCD
smartie” clock plugin, shown here.

N that looks like 20x4 LCD fun. But h ,
d(?\;voua[‘)roog(:'a?nliti " - o ‘.l‘.l ‘ll‘li ' '
- Arl Bo 1 ironm

Stare at the image for a while, and you’ll see
that each digit is rendered in a 3x4 block of
characters. And each character is made up of
just a few symbols: a solid block, some
triangles, and some half-height blocks.

We already know how to make the custom characters. You can emulate the smartie digits
with 7 different symbols: lower-right triangle, lower-left triangle, upper-right triangle, upper-
left triangle, upper horizontal bar, lower horizontal bar, and solid block. Here they are:

digits = [

0x01, 0x03, 0x03, 0x07, 0x07, 0x0F, OxO0F, Ox1F
0x10, 0x18, 0x18, 0x1C, 0xl1C, OxlE, Ox1lE, Ox1F
0x1F, 0xOF, OxOF, 0x07, 0x07, 0x03, 0x03, 0x01
Ox1F, Ox1lE, Ox1lE, O0Ox1C, 0Ox1C, 0x18, 0x18, 0x10
0x00, 0x00, 0x00, 0x00, Ox1F, Ox1lF, Ox1F, Ox1F #lower horiz bar
Ox1F, Ox1lF, Ox1F, Ox1F, 0x00, 0x00, 0x00, 0x00 #upper horiz bar
Ox1F, Ox1F, Ox1F, Ox1F, Ox1F, Ox1F, Ox1F, Ox1F] #solid block

#lower-rt triangle
#lower-1f triangle
#upper-rt triangle
#upper-1f triangle

O S
~ N SN N~ o~ 0~

Each digit is made up of a 3x4 grid of these symbols. | created a list with 10 members for
the 10 digits. Each member is a list of the 12 symbols needed to create the digit.

bigDhigit = [

[0x00, Ox06, 0x01, Ox06, 0x20, 0x06, 0x06, 0x20, O0x06, 0x02, O0x06, 0x03], #0O
[0x20, Ox06, 0x20, 0x20, 0x06, 0x20, 0x20, 0x06, 0x20, 0x20, 0x06, 0x20], #1
[0x00, Ox06, 0x01, 0x20, 0x00, 0x03, 0x00, 0x03, 0x20, 0x06, O0x06, 0x06], #2
[0x00, Ox06, 0x01, 0x20, 0x20, 0x06, 0x20, 0x05, O0x06, 0x02, O0x06, 0x03], #3
[0x06, 0x20, 0x06, 0x06, 0x06, 0x06, 0x20, 0x20, 0x06, 0x20, 0x20, 0x06], #4
[0x06, Ox06, 0x06, Ox06, 0x04, 0x04, 0x20, 0x20, O0x06, 0x06, O0x06, 0x03], #5
[0x00, Ox06, 0x01, Ox06, 0x20, 0x20, 0x06, 0x05, 0x01, 0x02, O0x06, 0x03], #6
[0x06, Ox06, 0x06, 0x20, 0x20, 0x06, 0x20, 0x20, O0x06, 0x20, 0x20, 0x06], #7

[0x00, Ox06, 0x01, Ox06, 0x20, 0x06, 0x06, 0x05, 0x06, 0x02, 0x06, 0x03], #8
[0x00, 0Ox0O6, 0x01, 0x02, 0x04, 0x06, 0x20, 0x20, O0x06, 0x20, 0x20, 0x06] #9
]

0x00 indicates the first symbol (a lower-right triangle), 0x01 indicates the second (a lower-
left triangle), and so on. 0x20 is a blank. The 12 symbols in each digit are ordered from
top-left to lower-right.

The numeral 2’ begins with a lower-right triangle (0x00) A B

in the top left corner, followed by a solid block (0x06) and
a lower-left triangle (0x01). The complete sequence is AV
[0x00, 0x06, 0x01, 0x20, 0x00, 0x03, 0x00, 0x03, 0x20, A 7

0x06, 0x06, 0x06]

To display a digit, take its list of 12 symbols and display them in a 3x4 matrix:

def ShowBigDigit (symbol,startCol) :
#displays a 4-row-high digit at specified column
for row in range (4):
GotoXY (row, startCol)
for col in range (3):
index = row*3 + col
SendByte (symbol [index], True)

Time display involves getting the time digits and displaying them once a second. In the time
module there is a function ‘strftime’ which lets us format the time. By calling with the
parameter ("$13M%s"), atime of 12:23:56 will returned as a string ‘122356'.

def BigClock():
#displays large-digit time in hh:mm:ss on 20x4 LCD
LoadSymbolBlock (digits)
posn = [0,3,7,10,14,17] #column position for each digit
ClearDisplay ()
ShowColon (6)
ShowColon (13)

while (True): #CONTINOUS LOOP!
tStr = time.strftime ("%I3M%S") #time in HHMMSS format
for i in range (len(tStr)): #FOR EACH DIGIT ---
value = int (tStr[i]) #convert char to int
symbols = bigDigit[value] #get symbol list
ShowBigDigit (symbols,posn[i]) #display digit on LCD
time.sleep (1) #update clock each second

BigClock runs a continuous loop, so you will need to Ctrl-C from the keyboard to stop it
running. Enjoy!

7) PYTHON SCRIPT for PI LCD, PART 4:

#!/usr/bin/python
S i
LCD4: Learning how to control an LCD module from Pi

#
#
#
Author: Bruce E. Hall <bhall66@gmail.com>
Date : 12 Mar 2013
#
#
#
#

See w8bh.net for more information.
FHAH AR R R R R
import time #for timing delays
import RPi.GPIO as GPIO

import random

#OUTPUTS: map GPIO to LCD lines

LCD RS =7 #GPIO7 = Pi pin 26

LCD E = 8 #GPIO8 = Pi pin 24

LCD D4 = 17 #GPIO17 = Pi pin 11

LCD D5 = 18 #GPI018 = Pi pin 12
LCD_D6 = 27 #GPIO21 = Pi pin 13

LCD D7 = 22 #GPIO22 = Pi pin 15
OUTPUTS = [LCD RS,LCD E,LCD D4,LCD D5,LCD D6,LCD D7]
#HD44780 Controller Commands

CLEARDISPLAY = 0x01

RETURNHOME = 0x02

RIGHTTOLEFT = 0x04

LEFTTORIGHT = 0x06

DISPLAYOFF = 0x08

CURSOROFF = 0x0C

CURSORON = 0x0E

CURSORBLINK = 0xO0F

CURSORLEFT = 0x10

CURSORRIGHT = 0x14

LOADSYMBOL = 0x40

SETCURSOR = 0x80

#Line Addresses.

LINE = [0x00,0x40,0x14,0x54] #for 20x4 display
battery = [

[OxOE, Ox1B, Ox11, Ox11, Ox11, Ox11l, Ox11l, Ox1F], #0% (no charge)
[OxOE, 0x1B, 0Ox11l, Ox11, Ox11l, Ox1l1l, Ox1F, Ox1lF], #17%
[0xOE, Ox1B, Ox11, Ox1l, Ox1l, Ox1F, Ox1F, Ox1F], #34%
[OxOE, 0x1B, 0Ox11l, Ox11l, Oxl1lF, Ox1lF, Ox1F, Ox1lF], #50% (half-full)
[0xOE, Ox1B, Ox1l, Oxl1F, Ox1F, Ox1F, Ox1F, Ox1F], #67%
[0xOE, 0x1B, O0x1lF, OxlF, Ox1lF, OxlF, Ox1lF, Ox1F], #84%
[]

0x0E, Ox1F, Ox1F, Ox1F, Ox1F, Ox1F, Ox1F, Ox1F #100% (full charge)

~

patterns = [
0x15, 0x0A, 0Ox15, 0Ox0A, 0x15, 0xO0A, Ox15, OxOA], #50%
0x0A, 0Ox15, 0x0A, Ox15, 0x0A, Ox15, 0xO0A, Ox15], #alt 50%
0Ox15, 0x15, Ox15, 0x15, 0Ox15, 0x15, 0Ox15, 0x15], #3 vbars

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
0x00, 0Ox00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
0x00, 0Ox00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

~

~

[S S
~

~

]

verticalBars

0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x1F,

horizontalBars

0x10,
0x18,
0x1cC,
0x1E,
Ox1F,
0x0F,
0x07,
0x03,

digits

0x01,
0x10,
0x1F,
Ox1F,
0x00,
Ox1F,
0x1F,

bigDhigit

0x00,
0x20,
0x00,
0x00,
0x06,
0x06,
0x00,
0x06,
0x00,
0x00,

]

A R A R A A R R A R

#

#
#
#

def InitIO():
#Sets GPIO pins to input & output,
GPIO.setmode (GPIO.BCM)

0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
Ox1F,
0x1F,

0x10,
0x18,
0x1cC,
0x1E,
Ox1F,
0x0F,
0x07,
0x03,

[
0x03,
0x18,
0x0F,
0x1E,
0x00,
Ox1F,
0x1F,

=1
0x06,
0x06,
0x06,
0x06,
0x20,
0x06,
0x06,
0x06,
0x06,
0x06,

[
0x00,
0x00,
0x00,
0x00,
0x00,
0x1F,
Ox1F,
0x1F,

= [
0x10,
0x18,
0x1cC,
0x1E,
Ox1F,
0x0F,
0x07,
0x03,

0x03,
0x18,
0xO0F,
0x1E,
0x00,
Ox1F,
0x1F,

0x01,
0x20,
0x01,
0x01,
0x06,
0x06,
0x01,
0x06,
0x01,
0x01,

0x00,
0x00,
0x00,
0x00,
Ox1F,
0x1F,
Ox1F,
0x1F,

0x10,
0x18,
0x1cC,
0x1E,
Ox1F,
0xO0F,
0x07,
0x03,

0x07,
0x1cC,
0x07,
0x1cC,
0x00,
Ox1F,
0x1F,

0x06,
0x20,
0x20,
0x20,
0x06,
0x06,
0x06,
0x20,
0x06,
0x02,

0x00,
0x00,
0x00,
0x1F,
Ox1F,
0x1F,
Ox1F,
0x1F,

0x10,
0x18,
0x1cC,
0x1E,
Ox1F,
0xO0F,
0x07,
0x03,

0x07,
0x1cC,
0x07,
0x1cC,
0x1F,
0x00,
0x1F,

0x20,
0x06,
0x00,
0x20,
0x06,
0x04,
0x20,
0x20,
0x20,
0x04,

GPIO.setwarnings (False)
for lcdLine in OUTPUTS:

def CheckSwitches() :

GPIO.setup (lcdLine,
for switch in INPUTS:

0x00,
0x00,
Ox1F,
0x1F,
Ox1F,
0x1F,
Ox1F,
0x1F,

0x10,
0x18,
0x1cC,
0x1E,
Ox1F,
0x0F,
0x07,
0x03,

0x0F,
0x1E,
0x03,
0x18,
0x1F,
0x00,
0x1F,

0x06,
0x20,
0x03,
0x06,
0x06,
0x04,
0x20,
0x06,
0x06,
0x06,

GPIO.OUT)

0x00,
0x1F,
Ox1F,
0x1F,
Ox1F,
0x1F,
Ox1F,
0x1F,

0x10,
0x18,
0x1cC,
0x1E,
Ox1F,
0x0F,
0x07,
0x03,

0x0F,
0x1E,
0x03,
0x18,
0x1F,
0x00,
0x1F,

0x06,
0x20,
0x00,
0x20,
0x20,
0x20,
0x06,
0x20,
0x06,
0x20,

0x1F
Ox1F
0x1F
Ox1F
0x1F
O0x1F
0x1F
O0x1F

0x10
0x18
0x1C
0x1E
0x1F
0x0F
0x07
0x03

0x20,
0x06,
0x03,
0x05,
0x20,
0x20,
0x05,
0x20,
0x05,
0x20,

O S U
N N S SN S~ o~ 0~

~

N SN SN SN S~ o~ 0~

S U U S Y

~

0x06,
0x20,
0x20,
0x06,
0x06,
0x06,
0x01,
0x06,
0x06,
0x06,

#1 bar
#2 bars
#3 bars
#4 bars
#5 bars
#6 bars
#7 bars
#8 bars

#1 bar
#2 bars
#3 bars
#4 bars
#5 bars
#4 bars
#3 bars
#2 bars

#lower-rt triangle
#lower-1f triangle
#upper-rt triangle
#upper-1f triangle
#lower horiz bar
#upper horiz bar
#solid block

0x02,
0x20,
0x06,
0x02,
0x20,
0x06,
0x02,
0x20,
0x02,
0x20,

0x06,
0x06,
0x06,
0x06,
0x20,
0x06,
0x06,
0x20,
0x06,
0x20,

Low-level routines for configuring the LCD module.
These routines contain GPIO read/write calls.

as required by LCD board

GPIO.setup(switch, GPIO.IN, pull up down=GPIO.PUD UP)

#0
#1
#2
#3
#4
#5
#6
#7
#8
#9

def

def

def

#Check status of all four switches on the LCD board
#Returns four boolean values as a tuple.

vall = not GPIO.input (SW1)

val2 = not GPIO.input (SW2)

val3 = not GPIO.input (SW3)

vald = not GPIO.input (SW4)

return (val4d,vall,val2,val3)

PulseEnableline () :

#Pulse the LCD Enable line; used for clocking in data
GPIO.output (LCD E, GPIO.HIGH) #pulse E high
GPIO.output (LCD E, GPIO.LOW) #return E low

SendNibble (data) :

#sends upper 4 bits of data byte to LCD data pins D4-D7
GPIO.output (LCD D4, bool(data & 0x10))
GPIO.output (LCD D5, bool(data & 0x20))
GPIO.output (LCD D6, bool (data & 0x40))
GPIO.output (LCD D7, bool (data & 0x80))

SendByte (data, charMode=False) :
#send one byte to LCD controller

GPIO.output (LCD RS, charMode) #set mode: command vs. char
SendNibble (data) #send upper bits first
PulseEnablelLine () #pulse the enable line

data = (data & 0x0F)<< 4 #shift 4 bits to left
SendNibble (data) #send lower bits now
PulseEnablelLine () #pulse the enable line

A A A

#
#
#

def

def

def

def

def

def

def

Higher-level routines for diplaying data on the LCD.

ClearDisplay() :
#This command requires 1.5mS processing time, so delay is needed
SendByte (CLEARDISPLAY)
time.sleep(0.0015) #delay for 1.5mS

CursorOn () :
SendByte (CURSORON)

CursorOff () :
SendByte (CURSOROFF)

CursorBlink () :
SendByte (CURSORBLINK)

CursorLeft () :
SendByte (CURSORLEFT)

CursorRight () :
SendByte (CURSORRIGHT)

InitLCD() :

#initialize the LCD controller & clear display
SendByte (0x33) #initialize
SendByte (0x32) #initialize/4-bit
SendByte (0x28) #4-bit, 2 lines, 5x8 font
SendByte (LEFTTORIGHT) #rightward moving cursor
CursorOff ()

ClearDisplay ()

def SendChar (ch) :
SendByte (ord(ch), True)

def ShowMessage (string) :
#Send string of characters to display at current cursor position
for character in string:
SendChar (character)

def GotoLine (row) :
#Moves cursor to the given row
#Expects row values 0-1 for 16x2 display; 0-3 for 20x4 display
addr = LINE[row]
SendByte (SETCURSOR+addr)

def GotoXY (row,col):
#Moves cursor to the given row & column
#Expects col values 0-19 and row values 0-3 for a 20x4 display
addr = LINE[row] + col
SendByte (SETCURSOR + addr)

FhAF A A
#
BIG CLOCK & Custom character generation routines

#

def LoadCustomSymbol (addr,data) :
#saves custom character data at given char-gen address
#data is a list of 8 bytes that specify the 5x8 character
#each byte contains 5 column bits (b5,b4,..b0)
#each byte corresponds to a horizontal row of the character
#possible address values are 0-7
cmd = LOADSYMBOL + (addr<<3)
SendByte (cmd)
for byte in data:
SendByte (byte, True)

def LoadSymbolBlock (data) :
#loads a list of symbols into the chargen RAM, starting at addr 0x00
for i in range(len(data)):
LoadCustomSymbol (i,data[i])

def ShowBigDigit (symbol,startCol):
#displays a 4-row-high digit at specified column
for row in range (4):
GotoXY (row, startCol)
for col in range(3):
index = row*3 + col
SendByte (symbol [index], True)

def ShowColon(col) :
#displays a 2-char high colon ':' at specified column
dot = chr (0xAl)
GotoXY (1,col)
SendChar (dot)
GotoXY (2,col)
SendChar (dot)

def BigClock (seconds=10) :
#displays large-digit time in hh:mm:ss on 20x4 LCD
#continuous display (this routine does not end!)
print " Big Clock running"

LoadSymbolBlock (digits)
posn = [0,3,7,10,14,17]
ClearDisplay ()
ShowColon (6)
ShowColon (13)
for count in range (seconds) :
tStr = time.strftime ("$ISMES")
for i in range(len(tStr)):
value = int (tStr[i])
symbols = bigDigit[value]
ShowBigDigit (symbols,posn[i])
time.sleep (1)

S i
#

Basic HD44780 Test Routines

Code here is used in higher-level testing routines

#

ANIMATIONDELAY = 0.02

def LabelTest (label):
#Label the current Test
ClearDisplay ()
GotoXY (1,20-1len(label)); ShowMessage (label)
GotoXY (2,16); ShowMessage('test')

def CommandTest () :
LabelTest ('Command')
while (True):
st = raw input ("Enter a string or command: ")
if len(st)==2:
SendByte (int (st, 16))
elif len(st)==1:
SendByte (int (st), True)
else:
ShowMessage (st)

def AnimateCharTest (numCycles=8,delay=ANIMATIONDELAY) :
LabelTest ('Animation')

LoadSymbolBlock (battery) #get all battery symbols
GotoXY (1, 6) #where to put battery
for count in range (numCycles) :
for count in range(len(battery)): #sequence thru all symbols
SendByte (count, True) #display the symbol
CursorLeft () #keep cursor on same char
time.sleep (delay) #control animation speed
time.sleep (1) #wait between cycles

def ShowBars (row,col,numBars) :
#displays a graph symbol at row,col position
#numBars = number of horizontal (or vertical bars) in this symbol
#expected values = 0 to 7 (vertical) or 0 to 4 (horizontal)
GotoXY (row, col)
if numBars==0:
SendChar (' ")
else:
SendByte (numBars-1, True)

SRR R R R AR AR AR

#
Alphanumberic Testing Routines

#

def UpdateCursor (count) :

WIDTH = 15

if count==0:
GotoLine (0)

elif count==WIDTH:
GotoLine (1)

elif count==WIDTH*2:
GotoLine (2)

elif count==WIDTH*3:
GotoLine (3)

def GetNextCharacter (code) :
#for a given CODE, returns the next displayable ASCII character
#for example, calling with 'A' will return 'B'
#removes nondisplayable characters in HD44780 character set
i1if (code<0x20) or (code>=0xFF):
code = 0x20
elif (code>=0x7F) and (code<0xA0) :
code = 0xA0
else:
code += 1
return code

def FillScreen(code,delay=0):

#fill the LCD display with ASCII characters, starting with CODE,
#assumes a width of 15 characters x 4 lines = 60 chars total
for count in range (60) :

UpdateCursor (count)

SendByte (code, True)

code = GetNextCharacter (code)

time.sleep (delay)

def FillChar (code) :
#£fi11l the LCD display with a single ASCII character
#assumes a width of 15 characters x 4 lines = 60 chars total
for count in range (60) :
UpdateCursor (count)
SendByte (code, True)

def CharTest (numCycles=4, delay=ANIMATIONDELAY) :
#show screenfull of sequential symbols from character set
#starting with a random symbol
#delay = time between characters
LabelTest ('Char')
for count in range (numCycles) :
rand = random.randint (0, 255)
firstChar = GetNextCharacter (rand)
FillScreen (firstChar,delay)

def NumberTest (delay=1) :
#show an almost-full screen (60 chars) of each digit 0-9
#call with delay in seconds between each digit/screen
for count in range (10):
FillChar (ord('0")+count)
time.sleep (delay)

def TimeTest (numCycles=3):
#measures the time required to display 600 characters, sent
#60 characters at a time. The pause between screen displays
#is removed from the reported time.
pause = 0.5

LabelTest ('Time"')
for count in range (numCycles) :

startTime = time.time ()

NumberTest (pause)

elapsedTime = time.time()-startTime

elapsedTime -= pause*10

print " elapsed time (sec): %.3f" $ elapsedTime

S
#
Horizontal Graph Testing Routines

#

def ClearHBar (row, startCol) :
#remove all elements on horizontal bar
GotoXY (row, startCol)
for col in range(1l2):
SendByte (0x20, True)

def HBar (length, row) :
#creates a horizontal bar on the specified row
#expects length of 1 (min) to 80 (max)
#Must load horizontal bar symbols prior to calling
fullChars = length / 5
bars length % 5
col =3
ClearHBar (row,col)
for count in range (fullChars) :
ShowBars (row,col, 5)
col += 1
if bars>0:
ShowBars (row,col, bars)

def HBarTest (numCycles=8) :
LoadSymbolBlock (horizontalBars)
LabelTest ('Horz')
for count in range (numCycles) :
for row in range (4):
length = random.randint (1,60)
GotoXY (row, 0)
ShowMessage ("%$2d" % length)
HBar (length, row)
time.sleep (1)

def DecrementHBar (row, startCol, length) :
#reduce the number of horizontal bars by one

length -=1
fullChars = length / 5
bars = length % 5

col = startCol + fullChars
ShowBars (row, col, bars)

def IncrementHBar (row,startCol, length):
#increase the number of horizontal bars by one
fullChars = length / 5
bars = length % 5
col = startCol + fullChars

ShowBars (row, col,bars+1)

def AnimatedHBar (row, startCol,newLength,oldLength=0) :
diff = newLength - oldLength
for count in range(abs(diff)):

if diff>0:
IncrementHBar (row, startCol, oldLength)
oldLength +=1

else:
DecrementHBar (row, startCol, oldLength)
oldLength -=

time.sleep (ANIMATIONDELAY)

def AnimatedHBarTest (numCycles=8) :
LoadSymbolBlock (horizontalBars)
LabelTest ('HBar')
graph = [0,0,0,0]
for count in range (numCycles) :
for row in range(4):
length = random.randint (1,60)
GotoXY (row, 0)
ShowMessage ("%$2d" % length)
AnimatedHBar (row, 3, length, graph[row])
graph[row] = length

S i
#

Vertical Graph Testing Routines

#

def ClearVBar(col) :
#remove all elements on a vertical bar
for row in range (4):
GotoXY (row, col)
SendByte (0x20, True)

def VBar (height,col):
#creates a vertical bar at specified column
#expects height of 1 (min) to 32 (max)
#Must load vertical bar symbols prior to calling
fullChars = height / 8
bars = height % 8
row = 3
ClearVBar (col)
for count in range (fullChars) :
ShowBars (row, col, 8)
row —-= 1
if bars>0:
ShowBars (row, col,bars)

def VBarTest (numCycles=4) :
LoadSymbolBlock (verticalBars)
LabelTest ('Vert')
for count in range (numCycles) :
for col in range(15):
height = random.randint (1,32)
VBar (height, col)
time.sleep (1)

def SineGraph (numCycles=4):
#print a sin wave function using vertical bars.
#this is a sample application of the VBar routine.
#the 'sine' list emulates the following formula:
#radians=x*2*math.pi/15; y = math.sin(radians)*15 + 16
sine = [16,22,27,30,31,29,25,19,13,7,3,1,2,5,10]
LoadSymbolBlock (verticalBars)
LabelTest ('Sine')

for count in range (numCycles) :
for step in range(15):
for col in range(15):
X = col+step
VBar (sine[x%15],col)
time.sleep(0.2)

def IncrementVBar (col,height):

#increaase the number of vertical bars by one
fullChars = height / 8

bars = height % 8

ShowBars (3-fullChars,col,bars+l)

def DecrementVBar (col,height):

#decrease the number of vertical bars by one

height -= 1
fullChars = height / 8
bars = height % 8

ShowBars (3-fullChars,col,bars)

def AnimatedVBar (col,newHeight,oldHeight=0) :

diff = newHeight - oldHeight
for count in range (abs(diff)):
if diff>0:
IncrementVBar (col,oldHeight)
oldHeight +=1
else:
DecrementVBar (col, oldHeight)
oldHeight -=1
time.sleep (ANIMATIONDELAY)

def AnimatedVBarTest (numCycles=4) :

LoadSymbolBlock (verticalBars)

LabelTest ('VBar')

graph = [0]*15

for count in range (numCycles) :

for col in range (15):

height = random.randint (1,32)
AnimatedVBar (col,height,graph[col])
graph[col] = height

iSRS E R R R R

#
#
#

Main Program

print "Pi LCD4 program starting.”

InitIO() #Initialization

InitLCD ()

ClearDisplay ()

CharTest ()

TimeTest () #Basic LCD Tests
AnimateCharTest ()

HBarTest () #Horizontal Graph Tests
AnimatedHBarTest ()

VBarTest () #Vertical Graph Tests
AnimatedVBarTest ()

SineGraph ()

BigClock () #Something actually useful

#

END ##### 44444444444 aa a4 a4 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaay

