
 

                           

Beginner’s Guide 

to the  

PI LCD 

 
 

Part 3: Graphics Intro 

 
Bruce E. Hall, W8BH 

 
 
 
 
 
 

1) INTRODUCTION 
 

In Part 1 and Part 2 of this series, we learned how to check the switches and display text on 
the LCD board (available from mypishop.com).   Now it’s time to learn how to display more 
complex data, including graphics.  You may have purchased either a 16x2 or a 20x4 display 
with your kit.   In this write-up I’ll be using the 20x4 display, but a 16x2 will work just as well. 
 

 
2) THE HD44780 CHARACTER SETS 
 

Here is a list of characters that our LCD can 
display.  Numbers, uppercase letters, and 
lowercase letters are in their standard ASCII 
positions.  There is a block of unused character 
positions in the middle at addresses 0x80 to 
0x9F.  On the right is a set of Japanese katakana 
characters.  This ‘A0’ character set is the set 
available on my display.   
 
Some controller chips are burned with a different 
character set, one that contains European and 
Cyrillic characters instead of the Japanese ones.  
Interesting!  Which one do you have?  Let’s find 
out.   
 
The easiest way is to send a single character to 
the screen, and see what it looks like.  For 
example, character 0xE0 on my display is the 
Greek letter alpha (α).  On a chip with the A2 

http://w8bh.net/pi/PiLCD1.pdf
http://www.w8bh.net/pi/PiLCD2.pdf
http://www.mypishop.com/


character set, 0xE0 is an a-grave (à).    
 

#determine the character set 

SendByte(0x01)        #clear the display 

SendByte(0xE0,True)   #Either alpha (A0) or a-grave (A2) 

  
 
Does your controller chip have A0 or A2?  Now, just for fun, let’s fill up the display with 
characters.  I set up this routine for 4 rows of 15 characters each, giving me extra space for 
a text label. 
 

def FillChar(code): 

 for count in range(60): 

  UpdateCursor(count) 

  SendByte(code,True) 

 

def UpdateCursor(count): 

 if count==0: 

  GotoLine(0) 

  elif count=15: 

   GotoLine(1) 

  elif count=30: 

   GotoLine(2) 

  elif count=45: 

   GotoLine(3) 

 

Now try a call to FillChar(0xE0), and watch your display fill up with alphas.  UpdateCursor 
makes sure that you go from line to line at the appropriate times.  Rather inelegant looking, 
isn’t it?  How about something more compact? 
 

def UpdateCursor(count): 

 if (count%15)==0: 

  GotoLine(count/15) 

  

Is this any better?  I stuck with the first version, because it is fast, straightforward and easy 
to understand.  You choose! 
 
Finally, let’s mix it up a bit and display more of the character set.   You can sequence 
though all 255 character codes, but there are two large empty blocks in A0 that don’t have 
characters.   A function for getting the next available character will get rid of those empty 
blocks: 
    

def GetNextCharacter(code): 

 if (code<0x20) or (code>=0xFF):       #remove first empty block 

  code = 0x20 

 elif (code>=0x7F) and (code<0xA0):    #remove second empty block 

  code = 0xA0 

 else: 

  code += 1                      #OK to get next character 

 return code 

 

Now create a routine that looks like FillChar, except for an added call to GetNextCharacter.  
To slow down the action, delay after each character for a fraction of a second:  

 

def FillScreen(code,delay=0): 

 for count in range(60): 

  UpdateCursor(count) 



  SendByte(code,True) 

  code = GetNextCharacter(code) 

  time.sleep(delay) 

  

def CharTest(numCycles): 

 for count in range(numCycles): 

  rand   = random.randint(0,255) 

  firstChar = GetNextCharacter(rand) 

  FillScreen(firstChar,0.03) 

 

CharTest(5)   #Five screens of characters 

 
 

3) TIMING IS EVERYTHING 
 
If you are like me, you’ll watch some slow character screens for a while, then remove all 
delays to see how zippy it is.  You ought to be able to send 60 characters to the display 
without any noticable lag, right?  In fact, you ought to be able to send 600 characters 
without any lag.  I was a bit surprised to discover otherwise.  Try the following code: 
 

def NumberTest(delay=1): 

 #show an almost-full screen (60 chars) of each digit 0-9 

  for count in range(10): 

   FillChar(ord('0')+count) 

   time.sleep(delay) 

   

def TimeTest(numCycles=3): 

 #measures the time required to display 600 characters, sent 

 #60 characters at a time.  The pause between screen displays 

 #is removed from the reported time. 

  pause = 0.50 

  for count in range(numCycles): 

   startTime = time.time() 

   NumberTest(pause) 

   elapsedTime = time.time()-startTime 

   elapsedTime -= pause*10 

   print "  elapsed time (sec): %.3f" % elapsedTime 

 

TimeTest() 

 
You will need to import the time module for this one.  NumberTest will send sixty ‘0’ 
characters to the screen, then sixty ‘1’ characters, all the way to ‘9’.  It will briefly pause 
between each set to that you can verify that the numbers displayed correctly.  TimeTest 
runs this sequence three times, and measures the time for each test to run. 
 
The key to measuring time is the time.time() function.  We call it twice: once before and 
once after the call to NumberTest.  The difference between the two values is the amount of 
time that NumberTest took to execute.  I run it three times to see the variability: our python 
code shares CPU time with other processes, and may take more or less time depending on 
what else is running.  
 
The elapsed times will show on your screen.  How many seconds does it take?  On my 
system, a call to NumberTest averages about 4.50 seconds.  That’s pretty fast for a human, 
but slower than slow for our raspberry pi.  Let’s see what we can do to speed it up. 
 



 
4) FASTER, FASTER 
 
The functions in Part 2 included low-level routines for sending data to the LCD.   One of 
those routines included timing delays required by the LCD.  The routines worked, and I was 
happy.   But now I wonder: can we shorten any of the delays?  And if so, will it speed up our 
data transfer to the LCD?  We now have a tool, TimeTest, that will measure time and give 
us a visual indicator of success. 
 
Let’s look at the routine with the most delays:  PulseEnableLine.   Recall that each byte of 
our data is sent to the controller as two 4-bit nibbles, and we clock each in a brief pulse on 
the enable (LCD_E) line: 
 

def PulseEnableLine(): 

     mSec = 0.001                     

     time.sleep(mSec)                #DELAY (A): our first 1 mS wait 

     GPIO.output(LCD_E, GPIO.HIGH)    

     time.sleep(mSec)                #DELAY (B): our second 1 mS wait 

     GPIO.output(LCD_E, GPIO.LOW)     

      time.sleep(mSec)                #DELAY (C): our third 1 mS wait 
 
This routine contains 3 mS of waiting time, and it is called twice per byte.  In Part 2 I said we 
could halve those waiting times, reducing our waiting from 6 mS to 3 mS per byte.   It works.  
But when I try to reduce those times to 0.1 mS (100 microseconds), my display falters. 
 
When in doubt, RTFM (read the manual).  On page 49, the HD44780 datasheet gives the 
timing for the LCD_E line as 450 nanoseconds.  The controller needs less than half a 
microsecond of pulse!  So why would our display falter at 100 microseconds?  OK, RTFM 
again.  Some commands require much more execution time than others.  In particular, the 
Clear Screen and Return Home instructions each require a whopping 1.52 mS to execute – 
40 times longer than the other commands.  We call the Clear Screen command in our 
initialization sequence.  Modify that command, adding in a delay: 
 

def ClearDisplay(): 

  #This command requires 1.5mS processing time, so delay is needed 

  SendByte(CLEARDISPLAY) 

  time.sleep(0.0015)           #delay for 1.5mS 

 
Now we can go back to PulseEnableLine and reduce the delays.  Here is a table of 
TimeTest results when I reduce the A, B, and C delays: 

 
 

Wow!  By removing the delays we 
have improved performance 35-
fold.  Why don’t we need the 
delays?  Because Python is slow, 
and each Python statement takes 
longer than the required pulse 
time.  Try it and see. 
 
  

Condition TimeTest Result  

All delays = 1 mS 4.50 seconds 

All delays = 0.5 mS 2.54 

All delays =  0.1 mS 1.00 

Remove A&C, B=0.1 mS 0.45 

Remove A&C; B=0.001 mS 0.35 

Remove A, B, & C 0.13 



 
5) CUSTOM CHARACTERS 
 
The LCD controller is great for ready-made alphanumeric characters:  send the code for a 
character in ROM, and it is displayed on the LCD.  But there is also a very small amount of 
RAM reserved for custom characters.  The controller can hold up to 8 characters of your 
own design.  To create and display these characters, use the following procedure: 
 

- Design your 5x8 character 
- Code it into 8 bytes, one byte for each row 
- Save the data in the controller’s ‘character generator RAM’ 
- Repeat above steps for up to 8 characters 
- Display the character by sending the corresponding code (0x00 through 0x07) 

 
Let’s try a useful example:  a battery status indicator.  We will create seven symbols, going 
from no-charge to full-charge.  Fill in the outline of the no-charge symbol, assigning a ‘1’ to 
a filled square and ‘0’ to a clear square. 
 
 

Here is the battery symbol on a 5x8 grid.  There 
are 8 rows, and each row has 5 columns.  The 
green box shows how we convert the binary 
ones and zeros of each row to their 
hexadecimal equivalent.  Our 8-byte 
representation for the symbol, from top to 
bottom, is the list [0x1E, 0x1B, …, 0x1F] 
 
 
 

 
To create a full-charge battery, just fill in the middle rows.  As you fill each middle row, its 
value will change from 0x11 to 0x1F.  A list of all of these battery symbols looks like this: 
 

battery = [ 

[ 0x0E, 0x1B, 0x11, 0x11, 0x11, 0x11, 0x11, 0x1F ],  #0%   (no charge) 

[ 0x0E, 0x1B, 0x11, 0x11, 0x11, 0x11, 0x1F, 0x1F ],  #17% 

[ 0x0E, 0x1B, 0x11, 0x11, 0x11, 0x1F, 0x1F, 0x1F ],  #34% 

[ 0x0E, 0x1B, 0x11, 0x11, 0x1F, 0x1F, 0x1F, 0x1F ],  #50%  (half-full) 

[ 0x0E, 0x1B, 0x11, 0x1F, 0x1F, 0x1F, 0x1F, 0x1F ],  #67% 

[ 0x0E, 0x1B, 0x1F, 0x1F, 0x1F, 0x1F, 0x1F, 0x1F ],  #84% 

[ 0x0E, 0x1F, 0x1F, 0x1F, 0x1F, 0x1F, 0x1F, 0x1F ],  #100% (full charge) 

] 

 
Each row of this list corresponds to a battery symbol, from the no-charge symbol on top, to 

the full-charge symbol on the bottom. 

 
  

0 1 1 1 0 

1 1 0 1 1 

1 0 0 0 1 

1 0 0 0 1 

1 0 0 0 1 

1 0 0 0 1 

1 0 0 0 1 

1 1 1 1 1 

0b01110 = 0x1E 

0b11011 = 0x1B 

0b10001 = 0x11 

0b10001 = 0x11 

0b10001 = 0x11 

0b10001 = 0x11 

0b10001 = 0x11 

0b11111 = 0x1F 



6) LOADING THE CG-RAM 
 
Now that we have our artwork encoded, it’s 
time to load it into the character-generator 
RAM.  Remember that we have 8 slots (of 8 
bytes each), so our list of 7 symbols will fit. To 
load a single character, we send a 
‘LOADSYMBOL’ (0x40) command which 
includes the   
start address in its lower 6 bits.  For example, 
if we want to store an 8 bit character for 
position 0x02, the command will be 0x40 + 
0x10 = 0x50. 
 
Notice that the starting address is just the symbol position * 8.  After we send this 
command, all we need to do is to send the 8 bytes as character data: 

 

def LoadCustomSymbol(posn,data): 

  cmd = LOADSYMBOL + posn<<3 

  for byte in data: 

   SendByte(byte,True) 

 

def LoadSymbolBlock(data): 

  for i in range(len(data)): 

   LoadCustomSymbol(i,data[i]) 

 

Now that all of the battery symbols are loaded, you can display each one by sending 

characters 0x00 through 0x07 to the LCD.  If you keep the cursor in the same position, you 

can animate the character to look like your cell phone ‘battery is charging’ symbol: 

 

def AnimateCharTest(numCycles=8,delay=0.05): 

 LoadSymbolBlock(battery)    #get all battery symbols 

 GotoXY(1,6)                              #where to put battery 

 for count in range(numCycles): 

  for count in range(len(battery)):    #sequence thru all symbols 

   SendByte(count,True)             #display the symbol 

   CursorLeft()                     #keep cursor on same char  

   time.sleep(delay)                #control animation speed 

  time.sleep(1)                        #wait between cycles 

 

That’s all for part 3.  In the next part we will create some useful graph functions and make a 

large-digit clock.   

Character 
Position 

CG-RAM 
Address 

0x00 0x00 – 0x07 
0x01 0x08 – 0x0F 
0x02 0x10 – 0x17 
0x03 0x18 – 0x1F 
0x04 0x20 – 0x27 
0x05 0x28 – 0x2F 
0x06 0x30 – 0x37 
0x07 0x38 – 0x3F 



7) PYTHON SCRIPT for PI LCD, PART 3: 

#!/usr/bin/python 

 

######################################################################## 

# 

#    LCD2:  Learning how to control an LCD module from Pi 

# 

#    Author:  Bruce E. Hall  <bhall66@gmail.com> 

#    Date  :  10 Mar 2013 

# 

#    This code assumes 20x4 display, but will run on 16x2 display. 

#    See w8bh.net for more information. 

# 

######################################################################## 

 

import time                     #for timing delays 

import RPi.GPIO as GPIO 

import random 

 

#OUTPUTS: map GPIO to LCD lines 

LCD_RS              = 7         #GPIO7  = Pi pin 26 

LCD_E               = 8         #GPIO8  = Pi pin 24 

LCD_D4              = 17        #GPIO17 = Pi pin 11 

LCD_D5              = 18        #GPIO18 = Pi pin 12 

LCD_D6              = 27        #GPIO21 = Pi pin 13 

LCD_D7              = 22        #GPIO22 = Pi pin 15 

OUTPUTS = [LCD_RS,LCD_E,LCD_D4,LCD_D5,LCD_D6,LCD_D7] 

 

#INPUTS: map GPIO to Switches 

SW1                 = 4         #GPIO4  = Pi pin 7 

SW2                 = 23        #GPIO16 = Pi pin 16 

SW3                 = 10        #GPIO10 = Pi pin 19 

SW4                 = 9         #GPIO9  = Pi pin 21 

INPUTS = [SW1,SW2,SW3,SW4] 

 

 

#HD44780 Controller Commands 

CLEARDISPLAY        = 0x01 

RETURNHOME          = 0x02 

RIGHTTOLEFT         = 0x04 

LEFTTORIGHT         = 0x06 

DISPLAYOFF          = 0x08 

CURSOROFF           = 0x0C 

CURSORON            = 0x0E 

CURSORBLINK         = 0x0F 

CURSORLEFT          = 0x10 

CURSORRIGHT         = 0x14 

LOADSYMBOL          = 0x40 

SETCURSOR           = 0x80 

 

#Line Addresses. 

LINE = [0x00,0x40,0x14,0x54]    #for 20x4 display 

 

#custom character-generator symbols 

battery = [ 

[ 0x0E, 0x1B, 0x11, 0x11, 0x11, 0x11, 0x11, 0x1F ],  #0%   (no charge) 

[ 0x0E, 0x1B, 0x11, 0x11, 0x11, 0x11, 0x1F, 0x1F ],  #17% 

[ 0x0E, 0x1B, 0x11, 0x11, 0x11, 0x1F, 0x1F, 0x1F ],  #34% 

[ 0x0E, 0x1B, 0x11, 0x11, 0x1F, 0x1F, 0x1F, 0x1F ],  #50%  (half-full) 

[ 0x0E, 0x1B, 0x11, 0x1F, 0x1F, 0x1F, 0x1F, 0x1F ],  #67% 

[ 0x0E, 0x1B, 0x1F, 0x1F, 0x1F, 0x1F, 0x1F, 0x1F ],  #84% 

[ 0x0E, 0x1F, 0x1F, 0x1F, 0x1F, 0x1F, 0x1F, 0x1F ],  #100% (full charge) 



] 

 

 

######################################################################## 

# 

#   Low-level routines for configuring the LCD module. 

#    These routines contain GPIO read/write calls. 

# 

 

def InitIO(): 

    #Sets GPIO pins to input & output, as required by LCD board 

    GPIO.setmode(GPIO.BCM) 

    GPIO.setwarnings(False) 

    for lcdLine in OUTPUTS: 

        GPIO.setup(lcdLine, GPIO.OUT) 

    for switch in INPUTS: 

        GPIO.setup(switch, GPIO.IN, pull_up_down=GPIO.PUD_UP) 

     

def CheckSwitches(): 

    #Check status of all four switches on the LCD board 

    #Returns four boolean values as a tuple. 

    val1 = not GPIO.input(SW1) 

    val2 = not GPIO.input(SW2) 

    val3 = not GPIO.input(SW3) 

    val4 = not GPIO.input(SW4) 

    return (val4,val1,val2,val3) 

 

def PulseEnableLine(): 

    #Pulse the LCD Enable line; used for clocking in data 

    GPIO.output(LCD_E, GPIO.HIGH)  #pulse E high         

    GPIO.output(LCD_E, GPIO.LOW)   #return E low 

 

def SendNibble(data):    

    #sends upper 4 bits of data byte to LCD data pins D4-D7 

    GPIO.output(LCD_D4, bool(data & 0x10)) 

    GPIO.output(LCD_D5, bool(data & 0x20)) 

    GPIO.output(LCD_D6, bool(data & 0x40)) 

    GPIO.output(LCD_D7, bool(data & 0x80)) 

  

def SendByte(data,charMode=False): 

    #send one byte to LCD controller 

    GPIO.output(LCD_RS,charMode)   #set mode: command vs. char 

    SendNibble(data)               #send upper bits first 

    PulseEnableLine()              #pulse the enable line 

    data = (data & 0x0F)<< 4       #shift 4 bits to left 

    SendNibble(data)               #send lower bits now   

    PulseEnableLine()              #pulse the enable line 

 

 

######################################################################## 

# 

#   Higher-level routines for displaying data on the LCD. 

# 

 

def ClearDisplay(): 

    #This command requires 1.5mS processing time, so delay is needed 

    SendByte(CLEARDISPLAY) 

    time.sleep(0.0015)           #delay for 1.5mS 

 

def CursorOn(): 

    SendByte(CURSORON) 

     

def CursorOff(): 



    SendByte(CURSOROFF) 

     

def CursorBlink(): 

    SendByte(CURSORBLINK) 

     

def CursorLeft(): 

    SendByte(CURSORLEFT) 

     

def CursorRight(): 

    SendByte(CURSORRIGHT) 

 

def InitLCD(): 

    #initialize the LCD controller & clear display 

    SendByte(0x33)                 #initialize 

    SendByte(0x32)                 #initialize/4-bit 

    SendByte(0x28)                 #4-bit, 2 lines, 5x8 font 

    SendByte(LEFTTORIGHT)          #rightward moving cursor 

    CursorOff() 

    ClearDisplay() 

 

def SendChar(ch): 

    SendByte(ord(ch),True) 

 

def ShowMessage(string): 

    #Send string of characters to display at current cursor position 

    for character in string: 

        SendChar(character) 

                

def GotoLine(row): 

    #Moves cursor to the given row 

    #Expects row values 0-1 for 16x2 display; 0-3 for 20x4 display 

    addr = LINE[row] 

    SendByte(SETCURSOR+addr) 

     

def GotoXY(row,col): 

    #Moves cursor to the given row & column 

    #Expects col values 0-19 and row values 0-3 for a 20x4 display 

    addr = LINE[row] + col 

    SendByte(SETCURSOR + addr) 

     

 

######################################################################## 

# 

#   Custom character generation routines 

# 

 

def LoadCustomSymbol(addr,data): 

    #saves custom character data at given char-gen address 

    #data is a list of 8 bytes that specify the 5x8 character 

    #each byte contains 5 column bits (b5,b4,..b0) 

    #each byte corresponds to a horizontal row of the character 

    #possible address values are 0-7 

    cmd =  LOADSYMBOL + (addr<<3) 

    SendByte(cmd) 

    for byte in data: 

        SendByte(byte,True) 

 

def LoadSymbolBlock(data): 

    #loads a list of symbols into the chargen RAM, starting at addr 0x00 

    for i in range(len(data)): 

        LoadCustomSymbol(i,data[i]) 

 

 



######################################################################## 

# 

#   Basic HD44780/LCD Test Routines 

#         

# 

         

def LabelTest(label): 

    #Label the current Test 

    ClearDisplay() 

    GotoXY(1,20-len(label)); ShowMessage(label) 

    GotoXY(2,16); ShowMessage('test') 

 

def CommandTest(): 

    LabelTest('Command') 

    while (True): 

        st = raw_input("Enter a string or command: ") 

        if len(st)==2: 

            SendByte(int(st,16)) 

        else: 

            ShowMessage(st) 

         

def AnimateCharTest(numCycles=8,delay=0.1): 

    LabelTest('Animation') 

    LoadSymbolBlock(battery)                #get all battery symbols 

    GotoXY(1,3)                             #where to put battery 

    for count in range(numCycles): 

        for count in range(len(battery)):   #sequence thru all symbols 

            SendByte(count,True)            #display the symbol 

            CursorLeft()                    #keep cursor on same char     

            time.sleep(delay)               #control animation speed 

        time.sleep(1)                       #wait between cycles 

         

def UpdateCursor(count): 

    WIDTH = 15 

    if count==0: 

        GotoLine(0) 

    elif count==WIDTH: 

        GotoLine(1) 

    elif count==WIDTH*2: 

        GotoLine(2) 

    elif count==WIDTH*3: 

        GotoLine(3) 

         

def GetNextCharacter(code): 

    #for a given CODE, returns the next displayable ASCII character 

    #for example, calling with 'A' will return 'B' 

    #removes nondisplayable characters in HD44780 character set 

    if (code<0x20) or (code>=0xFF): 

        code = 0x20 

    elif (code>=0x7F) and (code<0xA0): 

        code = 0xA0 

    else: 

        code += 1 

    return code 

         

def FillScreen(code,delay=0): 

    #fill the LCD display with ASCII characters, starting with CODE, 

    #assumes a width of 15 characters x 4 lines = 60 chars total 

    for count in range(60): 

        UpdateCursor(count) 

        SendByte(code,True) 

        code = GetNextCharacter(code) 

        time.sleep(delay) 



         

def FillChar(code): 

    #fill the LCD display with a single ASCII character 

    #assumes a width of 15 characters x 4 lines = 60 chars total 

    for count in range(60): 

        UpdateCursor(count) 

        SendByte(code,True) 

         

def CharTest(numCycles=4, delay=0.03): 

    #show screenfull of sequential symbols from character set 

    #starting with a random symbol 

    #delay = time between characters 

    LabelTest('Char') 

    for count in range(numCycles): 

         

        rand   = random.randint(0,255) 

        firstChar = GetNextCharacter(rand) 

        FillScreen(firstChar,delay) 

     

def NumberTest(delay=1): 

    #show an almost-full screen (60 chars) of each digit 0-9 

    #call with delay in seconds between each digit/screen 

    for count in range(10): 

        FillChar(ord('0')+count) 

        time.sleep(delay) 

         

def TimeTest(numCycles=3): 

    #measures the time required to display 600 characters, sent 

    #60 characters at a time.  The pause between screen displays 

    #is removed from the reported time. 

    pause = 0.5 

    LabelTest('Time') 

    for count in range(numCycles): 

        startTime = time.time() 

        NumberTest(pause) 

        elapsedTime = time.time()-startTime 

        elapsedTime -= pause*10 

        print "  elapsed time (sec): %.3f" % elapsedTime     

         

         

########################################################################    

# 

#   Main Program 

# 

 

print "Pi LCD3 program starting." 

InitIO()                   

InitLCD()              

TimeTest()                         

CharTest() 

AnimateCharTest() 

print "Done." 

 

     

#   END  ############################################################### 

 


