

Raspberry Pi

GPIO for Dummies

Part 1

Bruce E. Hall, W8BH

1) INTRODUCTION

The amazing Raspberry Pi is a credit card size computer, built for learning and fun. In
addition to the USB and Ethernet ports, it can connect to other hardware through its
general-purpose IO (GPIO) interface. The Raspberry Pi GPIO is a bank of 26 pins on the
top-left corner of the circuit board, which includes 17 digital input/output connections.

If you want to use GPIO on the Raspberry Pi, there are a few things you must know. First,
these unbuffered lines connect directly to the processor. They do not tolerate much abuse:
a spark from your fingertip, excessive current drain, or an incorrect voltage is enough to fry
your pi. Next, you should learn what each pin is for, and be careful how they are
connected. Using the wrong pin, or accidentally shorting the pins, can ruin your whole day.

Fortunately, help is available. There are simple add-on boards that plug directly on the
GPIO connector. I wholeheartedly recommend learning with one of these boards. For this
tutorial I will be using the ‘Push your Pi’ kit, available for $9.99 at MyPiShop.com. Why?

- It’s compact: Just pop it on top of the pi.
- It’s simple: no need for a breadboard or wires.
- It’s safer: electrical connections are already worked out.
- It’s a great excuse to get out your soldering iron.
- It’s an easy way to learn about GPIO on your pi
- Like the Pi, it’s incredibly cheap! Maximize your bang-for-
the-buck.

If you like learning by doing, don’t hesitate. Just buy one of
these add-on boards and follow along.

2) ASSEMBLY

I enjoy a good excuse to melt solder. My bag of parts arrived safely, and well packaged.
This kit does not contain a huge number of parts. Make sure you have all of the parts,
including 8 green LEDs, 8 switches, 2 black resistor arrays, the 26-pin socket, and the PCB.
Use whatever method you like for keeping parts off the floor, sorted & secure in your
workspace. Some people like egg cartons or muffin tins. I use a shoebox lid.

The kit does NOT come with any documentation. Print out the online instructions and
follow along. It’s pretty easy. Remember to put your 26-pin connector on the bottom of
the board, and the rest of the components on the top. I suggest starting with the switches
first, since these are the easiest components to place. Next, mount the resistor arrays.
Tack down one -- and only one -- pin with solder, then turn the board over and check your
alignment. Straighten if necessary. Reread the construction note and confirm the label
faces the bottom of the board. Solder the remaining leads. Next, install the LEDs, making
sure the longer leads are toward the top of the board. Tack down one lead for each LED,
check alignment, then solder the remaining lead. I suggest soldering the 26-pin connector
last. Why? Its plastic body will melt if your soldering iron happens to touch it while
soldering the LEDs. Don’t ask me how I know!

When everything is connected, double-check your soldering job. There should be a row of
unused holes labeled RP2. The only extra part you should have is a circular, clear-plastic
‘foot’ with adhesive backing. Shut down your pi, unplug the power, then mount the board on
top of the GPIO header. The board should mount over your pi, not away from it. Make
sure that the header and socket are firmly mated. It’s easy to misalign the connection, so
make sure there are no visible pins on either side of the socket. Attach the foot to bottom of
the board where is overlies the Pi’s tall electrolytic capacitor. The foot gives the PCB
stability, as well as providing electrical insulation between the board and your Pi.

Reattach power and boot your Pi. You may notice one or more LEDs light up. Don’t worry
- we will get control of them soon enough.

3) THE GPIO CONNECTOR

The GPIO connector is a block of 26 male pins in
the upper-left corner of the Raspberry Pi board,
arranged 2x13. Pin 1 is lower-left pin (marked P1)
and pin 26 is upper-right. The bottom row are odd-
numbered 1 though 25, and the top row are even-
numbered 2 through 26. The pins are spaced 0.1”
apart. Search “26p female connector” to find
mating connectors, which cost about $0.50 each.
With a little care, even oversized, 40-pin computer
ribbon cables can be attached. If you want to use
just a few lines, female-to-male breadboard
jumber wires are also available.

Pin 26

6 Pin 1

6

Here is a diagram of the pins and their
functions. There are four pins for
power and five pins for ground, leaving
17 pins for digital input/output. Of
these, 9 (shown in blue) have
alternative, specialized uses: 2 for I2C,
2 for UART, and 5 for SPI data
communication. The remaining 8 lines
in green are for general-purpose IO.

*On version 1 boards, pins 3, 5, and 13
were designated GPIO0, GPIO1, and
GPIO21, respectively.

4) THE VIRTUAL FILE SYSTEM

OK, that’s enough background. Now let’s use it. You can manipulate each of the 17 I/O
lines directly from the command prompt, using the virtual file system. In Raspian, each
GPIO port can be addressed like a file: open the port by creating the file(s), change the port
value by writing to the file, read the port by reading the file, and close the port by deleting
the file. These files are located at /sys/class/gpio. Log in as root (you must be root to
create the GPIO files) and go to this directory:

$ sudo su

cd /sys/class/gpio

ls

The directory will contain at least two files, export and unexport. To open a port, send the
port number you want to the export file. To close a port, do the same with unexport. For
example, lets open GPIO4. Send ‘4’ to the export file using the echo command:

echo 4 > export

ls

Look at the directory. There is now a ‘gpio4’ directory, which indicates that the port is open.
If you look in the gpio4 directory, you will see several files. One file is named direction, and
another is value. To write a ‘1’ to GPIO4, we first must set the direction to ‘out’ then write
set the value. Try the following:

echo out > gpio4/direction

echo 1 > gpio4/value

Did anything happen? The third LED, which is connected to GPIO4, should now be on. To
turn it off, just send a 0 to the same value. Close the port when you are finished, by
sending 4 to the unexport file. The gpio4 folder will be deleted.

echo 0 > gpio4/value

echo 4 > unexport

ls

exit

3.3V 1 2 5V

(SDA) *GPIO2 3 4 5V

(SCL) *GPIO3 5 6 GROUND

GPIO4 7 8 GPIO14 (TxD)

GROUND 9 10 GPIO15 (RxD)

GPIO17 11 12 GPIO18

*GPIO27 13 14 GROUND

GPIO22 15 16 GPIO23

3.3V 17 18 GPIO24

(MOSI) GPIO10 19 20 GROUND

(MISO) GPIO9 21 22 GPIO25

(SCKL) GPIO11 23 24 GPIO8 (CE0)

GROUND 25 26 GPIO7 (CE1)

You’ll need to troubleshoot your connections and board if the LED didn’t light. Nothing that
follows will work until you get LED 3 working.

Let’s try a bash script. This is a collection of bash commands, forming a program that can
be executed from the command prompt. In addition to echo, all we need is a time delay
(sleep) and a counting loop (for). Fire up an editor (I use nano) and enter the following
lines:

#!/bin/bash

cd /sys/class/gpio

echo “Opening port” 4

echo 4 > export

echo “And making it an output”

echo out > gpio4/direction

for I in {1..5}

do

 echo “Setting value to 1”

 echo 1 > gpio4/value

 sleep 1

 echo “Setting value to 0”

 echo 0 > gpio4/value

 sleep 1

done

echo “Closing port” 4

echo 4 > unexport

cd /home/pi

Save it as ledcheck. Make the file executable with chmod, then run it as root:

$ sudo su

chmod +x ledcheck

./ledcheck

LED 3 should blink 5 times. Make it even cooler by replacing each ‘4’ in the file with a ‘$1’
token. Now you can run it from root like this: ./ledcheck <port>, where <port> is the GPIO#
that you want to toggle. Try the following numbers: 2,3,4,7,11,…

./ledcheck 7

If you want, remove the cd commands at the top and bottom, and change all the file
references to absolute addresses. Change the for loop to an infinite loop. Shorten the
timing delays. Season to taste!

That’s all for part 1. In part 2 we will get use python to write to the LEDs and read from the
switches.

5) BASH SCRIPT for GPIO, PART 1:

#!/bin/bash

Name : LedCheck 1.0

Author : Bruce E. Hall <bhall66@gmail.com>

Date : 20 Mar 2013

Platform : Raspberry Pi, Raspian OS

A bash script for controlling an LED via a GPIO port.

Call this script with a single parameter = GPIO port#

The LED connected to this port will flash.

NOTE: You must run this script as root.

NUMCYCLES=8 #Number of LED flashes

DELAY=0.5 #Flash delay, 0.5 seconds = 1 Hz

Do some basic error checking before we start.

Make sure we are root & check for a port number.

if [$(whoami) != 'root']

then

 echo "Must be root to run this script."

 exit

fi

if [$# != 1]

then

 echo "Need a single parameter <GPIO port#>. "

 exit

fi

if ((($1 < 0) || ($1 > 27)))

then

 echo "Bad GPIO port number."

 exit

fi

Start the flasher!

echo "Starting LED flasher"

echo " Opening port" $1

echo $1 > /sys/class/gpio/export

echo " And making it an output."

echo out > /sys/class/gpio/gpio$1/direction

for COUNT in `seq $NUMCYCLES`

do

 echo " Setting value to 1 "

 echo 1 > /sys/class/gpio/gpio$1/value

 sleep $DELAY

 echo " Setting value to 0"

 echo 0 > /sys/class/gpio/gpio$1/value

 sleep $DELAY

done

echo " Closing port" $1

echo $1 > /sys/class/gpio/unexport

echo "Done."

