

Extending Encoder Button

Functionality
on your DDS Development Kit

By Bruce Hall, W8BH

The DDS kit by W8DIZ gives us a really useful input device: a rotary encoder with a pushbutton

on its shaft. In my VFO memory project, described at http://w8bh.net/avr/AddMemories.pdf, I

used the pushbutton to switch between tuning and memory preset modes. Since the

pushbutton is already used to change the cursor position, another pushbutton function is

needed. I wrote a few routines to add a ‘hold’ function, triggered when the button has been

depressed for an extended amount of time.

How many different functions can be signaled by a pushbutton? You can do a quick press,

which I call ‘tap’, and a longer press, which I call ‘hold’. Suppose you want more than two

functions for the pushbutton. Can we do better? Yes, we can. Both tap and hold contain two

distinct physical and electrical events: the initial button-down event, and the subsequent button-

up event. This gives us four separate events that can be associated with a single button press:

tap down, tap up, hold down, and hold up. If we needed more, we could even have events for

double taps, triple taps, double holds, etc. Any why stop there? We could have events for

Morse ‘a’, Morse ‘b’, etc. To keep things simple, and considering that our encoder pushbutton is

not an optimal key, I chose to stick with the 4 single-press events.

To extend our pushbutton functions from 2 (tap and hold) to 4 (tap up/down, hold up/down), we

need a way to detect the rising and falling edges of the encoder-button input. Our button input

is active low, so a button-down event is the 1->0 or falling-edge transition. When the button is

released, the event is a level change from 0->1 or rising-edge transition.

One way to detect edge transitions is to continuously look at the button pin input, and wait for a

change in the logic level. That would waste a lot of microcontroller time! Fortunately we don’t

have to. There are two hardware interrupts on the ATmega88 chip, which can detect logic

transitions on their associated input pins. Our pushbutton is already physically connected to an

external interrupt pin, so we are all set.

http://w8bh.net/avr/AddMemories.pdf

2 Extending Encoder Button Functionality

The Pushbutton Interrupt routine

In the original source code, the interrupt routine for a pushbutton event is very simple:

EXT_INT1:

 push temp1

 in temp1,SREG

 inc press

 out SREG,temp1

 pop temp1

 reti

There is only a single instruction which does anything at all: inc press. This instruction

increments the ‘press’ register, signaling a button press that needs to be dealt with. The

remainder of the code saves the contents of the status register while the interrupt is running. So

where do we set up the interrupt, and program it to detect rising or falling edges? This is done

in the initialization part of the program, near the beginning. The following lines set up our

pushbutton interrupt:

 ldi temp1,$03

 out EIMSK,temp1 ; enable int0 and int1 interrupts

 ldi temp1,0b00001011 ; int1 on falling edge & int0 on rising edge

 sbic PIND,STATE ; test state of encoder

 ldi temp1,0b00001010 ; int1 on falling edge & int0 on falling edge

 sts EICRA,temp1

OK, this is little meatier! The first two lines tell the microcontroller to enable the interrupts. In

other words, they turn pin #4, which is normally Port D, bit 2 into External Interrupt 0. Chip pin

#5, which is normally Port D, bit 3, turns into External Interrupt 1. The next four lines establish

the interrupt mode, and cause an interrupt to occur whenever a falling edge is detected. Notice

that the modes of the pushbutton and encoder interrupts are set at the same time, a

complicating issue that will need to be dealt with later.

The existing interrupt routine detects only the falling-edge (button down) event. When you

press the button, your cursor moves with the push-down action, but nothing happens when the

button is released. Try modifying the initialization code above, substituting the values $0F for

0b00001011 and $0C for 0b00001010. This will set the interrupt to look for a rising-edge

(button up) event instead.

Recompile with the modification above, and you’ll notice that the cursor does not move when

you press the button down; it moves when the button is released. Now turn the encoder knob

and press again. The cursor moves on button-down, not button-up! We just lost our interrupt-

on-rising-edge programming. The reason is found in the encoder interrupt routine, show below.

3 Extending Encoder Button Functionality

The Encoder Interrupt routine

EXT_INT0:

 push temp1 ;save temp1 register

 in temp1,SREG ;save the status register

 push temp1

 lds temp1,EICRA

 cpi temp1,0b00001010 ;test falling edge

 breq int05

 ldi temp1,0b00001010 ;set int0 for falling edge and int1 on falling edge

 sts EICRA,temp1

 sbis PIND,PHASE ;test PHASE

 rjmp int01

 dec encoder

 rjmp int09

int01:

 inc encoder

 rjmp int09

int05:

 ldi temp1,0b00001011 ;set int0 for rising edge and int1 on falling edge

 sts EICRA,temp1

 sbis PIND,PHASE ;test PHASE

 rjmp int06

 inc encoder

 rjmp int09

int06:

 dec encoder

int09:

 pop temp1

 out SREG,temp1 ;restore the status register

 pop temp1 ;restore temp1 register

It is worth a few minutes to study this code. The first three and last three lines just save and

restore registers. The remaining code handles encoder rotation, which is implemented using

the Gray code. If you are not familiar with Gray code, there is a detailed article in Wikipedia.

Our encoder uses a 2 bit code, which means the two encoder outputs change states during

rotation as follows: 00 -> 01 -> 11 -> 10. The code is similar to binary code 00 -> 01 -> 10 -

>11, isn’t it? But it is not the same. In our modern digital world, why don’t manufacturers use

binary code? Because binary requires both bits to change their state between 01 and 10. It is

difficult to make a control that will guarantee that both bits change at exactly the same time.

The gray code encoder only changes one bit at a time, and is simpler to manufacture.

Diz calls the encoder output attached to the interrupt pin as STATE and the non-interrupting

encoder output as PHASE. Here is a diagram of how the two outputs, state and phase,

change as we turn the encoder shaft clockwise:

4 Extending Encoder Button Functionality

A key fact is that if we set the State interrupt to fire on a given edge, then reading the second

output (Phase) will tell us the direction of spin. Look at the graph above to confirm. Change

the direction of spin, reversing the arrows, and you’ll come up with the table below:

Encoder Outputs: Phase = 0 Phase = 1

State = Rising-Edge Forward spin (CW) Reverse spin (CCW)

State = Falling-Edge Reverse spin Forward spin

We can only detect one edge at a time, so we must look for the first edge, and then switch

detection to the other edge. The algorithm can now be written as follows:

 Yes No

 Yes No Yes No

Now look back at the code, and you’ll see that it follows this algorithm exactly. Remember that

this routine somehow affected the pushbutton edge-detection. The problem is with these two

instructions:

01 10 00 11 01 10 00 11 01 10 11

State

Phase

Clockwise Rotation

Is interrupt mode rising-edge?

Change mode to falling-edge Change mode to rising edge.

Clockwise motion.

Increase encoder register value

Counter-clockwise motion.

Decease encoder register value.

Check Phase. Is it high (1)? Check Phase. Is it high (1)?

5 Extending Encoder Button Functionality

 ldi temp1,0b00001010 ;set int0 for falling edge and int1 on falling edge

 ldi temp1,0b00001011 ;set int0 for rising edge and int1 on falling edge

They are used to change the edge-detection for the encoder, but a side effect is they also

change the pushbutton (int1) edge-detection. Whenever the encoder turns, this interrupt routine

is called, and our pushbutton interrupt is affected. When we were only looking for button down

event (falling edge), this wasn’t a problem. But now it is. We’ll need to modify the encoder

routine, removing the pushbutton side effect, but keeping the encoder functionality intact. Here

is one way to do it. Additional comments added, following the algorithm above.

EINT0:

 push temp1 ;save temp1 register

 in temp1,SREG ;save the status register

 push temp1

 lds temp1,EICRA ;get current interrupt mode

 sbrs temp1,0 ;is mode rising-edge?

 rjmp i02 ;no, so go to falling edge (bit0=0)

 cbr temp1,$01 ;yes, clear bit 0

 sts EICRA,temp1 ;change mode to falling-edge

 sbis PIND,PHASE ;is PHASE=1?

 rjmp i01 ;no, increase encoder (CW rotation)

 dec encoder ;yes, decrease encoder (CCW rotation)

 rjmp i04

i01: inc encoder

 rjmp i04

i02: ;current mode = falling-edge

 sbr temp1,$01 ;set bit 0

 sts EICRA,temp1 ;change mode to rising-edge

 sbis PIND,PHASE ;is PHASE=1?

 rjmp i03 ;no, decrease encoder (CCW rotation)

 inc encoder ;yes, increase encoder (CW rotation)

 rjmp i04

i03: dec encoder

i04: pop temp1

 out SREG,temp1 ;restore the status register

 pop temp1 ;restore temp1 register

 reti

The two offending LDI instructions are replaced with CBR ‘clear bits in register’ and SBR ‘set

bits in register’. These two instructions operate on individual bits instead of the entire byte.

They allow us to change the bits in interrupt control register dealing with INT0 (encoder), and

leave the INT1 (pushbutton) control bits intact. If you try this new code, you’ll see that turning

the encoder still works, but does not affect our pushbutton interrupt settings anymore.

The encoder routine shows us an easy way to expand the pushbutton routine. Whenever we

detect a rising edge, flag it and change edge detection to falling edge. Similarly, whenever a

falling edge is detected, flag it and switch the edge detection to rising edge. In this way we can

capture both button-up and button-down events.

Now, what about hold-up and hold-down? The hold routine needs to be modified a bit, in order

to correctly capture the hold-up. Our previous hold routine generated hold events when the

6 Extending Encoder Button Functionality

button was held down, but the hold counter is reset every time the hold condition is recognized.

While you are holding down the button, the hold counter is incrementing, but there is no record

that the hold condition was previously met and currently in progress. For this we’ll use a

register bit, or flag. I’ve created a byte in SRAM called Flags, which gives us 8 separate bits

that we can set/reset as needed. Bit 0 is used to flag the ‘hold-in-progress’ condition. You can

use the other bits for whatever you like. We can use the SBR and CBR instructions to change

these bits individually, and use SBRS and SBRC instructions to branch depending on the bit

state. Here is the modified CheckHold routine:

CHECKHOLD:

 tst hold ;any new hold event?

 brpl ck1 ;no, so quit

 lds temp1,flags

 sbr temp1,$01 ;flag the hold

 sts flags,temp1 ;save it

 rcall ButtonHoldDown ;do the hold event

 clr hold ;reset = allow future holds

ck1: ret

The SBR instruction sets our new flag, so that whenever we see a button-up event, we can

check to see if the up-event if from a preceeding hold (flag=1) or just a tap (flag=0). The LDS

and STS instructions load and store the Flags, using the temp1 register as a location to test and

or modify the value.

The CheckButton routine will need to modified, too, since we have both button down and button

up events to look for. I kept it as a single routine, but you may split this into two separate

routines if it looks too cluttered for you. Here it is:

CHECKBUTTON:

 tst press ;any button down events?

 breq cb1 ;no, check for button up events?

 rcall ButtonTapDown ;do the button down

 dec press ;one less button tap to do

cb1: tst release ;any button up events?

 breq cb4 ;no, so quit

 lds temp1,flags

 sbrs temp1,0 ;is there a hold in progress?

 rjmp cb2 ;no

 cbr temp1,$01 ;yes, remove hold flag

 sts flags,temp1 ;save un-held state

 rcall ButtonHoldUp ;do hold release

 rjmp cb3

cb2: rcall ButtonTapUp ;to the Tap Release

cb3: dec release ;one less release to do

cb4: ret

7 Extending Encoder Button Functionality

It first checks for button-down events, which are counted by the button register, and then button-

up events, which are counted by the release register. A release, starting at label cb1, has two

possible causes: the release from a tap and the release from a hold. The hold-flag is checked

to see if there is a hold in progress. If not, the event must have been a tap release. If there is a

hold in progress, then it is a hold release and the hold flag is cleared.

There are now four named routines for the four button events: ButtonTapDown, ButtonTapUp,

ButtonHoldDown, and ButtonHoldUp. Time to declare them and do something! What you do

with them depends on your application, of course. For demonstration here, I’ll just flash the

LED and display a message and the LCD:

ButtonTapDown:

 ldi temp1,5 ; Display ‘TAP DOWN’

 rjmp dd1

ButtonTapUp:

 ldi temp1,6 ; Display ‘TAP RELEASE’

 rjmp dd1

ButtonHoldDown:

 ldi temp1,7 ; Display ‘HOLD DOWN’

 rjmp dd1

ButtonHoldUp:

 ldi temp1,8 ; Display ‘HOLD RELEASE’

dd1: rcall QuickBlink

 rcall DisplayLine2

 ret

We are nearly done. I wrote two routines, DisplayLine1 and DisplayLine2, to show messages

on the first and second line of the LCD. The display routine in the source code takes a pointer

to a null-terminated string. You can use the original DISPLAY_LINE routine instead, by labeling

each message and loading Z with the address of the label. It works fine, and this is what I did at

first. But you’ll either need to clear the display line before you start, or be sure to write spaces

for each of the 16 characters that you don’t send. In the end, I decided that creating 16

character messages was easier.

DISPLAYLINE1:

; displays a 16-character msg on line 1

; call with msg# in temp1

 mov temp2,temp1

 ldi temp1,$80 ;use line 1

 rcall LCDCMD

 rcall DISPLAY16 ;send 16 characters

 ret

DISPLAYLINE2:

; displays a 16-character msg on line 2

; call with msg# in temp1

 mov temp2,temp1

 ldi temp1,$C0 ;use line 2

 rcall LCDCMD

 rcall DISPLAY16 ;send 16 characters

8 Extending Encoder Button Functionality

 ret

DISPLAY16:

; displays a 16-character msg

; call with msg# in temp2

 ldi ZH,high(messages*2-16)

 ldi ZL,low(messages*2-16)

di1: adiw Z,16 ;add 16 for each message

 dec temp2 ;add enough?

 brne di1 ;no, add some more

 ldi temp3,16 ;16 characters

di2: lpm temp1,Z+ ;get the next character

 rcall LCDCMD ;put character on LCD

 dec temp3 ;all 16 chars sent?

 brne di2 ;no, so repeat

 ret

Both routines position the cursor to the start of an LCD line, and then call Display16 to send the

characters. Display16 points to the start of the message block, which is at the end of the

program. It finds the correct offset by multiplying the message number by 16. I used a small, 3

instruction addition loop to do the multiplication. The ATmega88 has a hardware-multiply

instruction, which you can try instead.

The button demonstration

The final code shown here is for demonstration only, and shows how we can detect 4 different

button states. It doesn’t do anything useful. To access the demonstration, hold the button down

until the LCD displays ‘Button test mode’. Then press the button and see what happens. Press

the reset button to return to normal mode. Some routines are not defined in this demonstration

code and are ‘commented out’ with a semicolon at the start of the line.

Choices, choices

There are lots of ways to check button states and trap button events. In fact, when I started

writing this article I used a different method. My original idea was to use have a single register

that contained flags for button-up, button-down, and hold. The interrupt routines set the flags,

and the program loop tested and reset the flags. It sounds efficient, and it worked.

Unfortunately, it did not blend well with the existing source code, and the ‘glue’ code that kept

both parts working was confusing. So I dumped it in favor of the routines presented here.

Instead, we use 2 registers (press and release) and an additional hold flag. It isn’t too efficient,

register-wise, but works well with the existing code. Experiment and find a better way!

9 Extending Encoder Button Functionality

Source Code

;***

;* W8BH – INTERRUPT VECTOR TABLE

;***

; use RJMP instructions with ATmega88 chips

; use JMP instructions with ATmega328 chips

.cseg

.org $000

 jmp RESET

.org INT0addr

 jmp EINT0 ; New External Interrupt Request 0

.org INT1addr

 jmp EINT1 ; New External Interrupt Request 1

.org OVF0addr

 jmp OVF0 ; Timer/Counter0 Overflow

.org OVF2addr

 jmp OVF2 ; Timer/Counter2 overflow

.org INT_VECTORS_SIZE

;insert the following instruction below the ‘menu’ label

menu: ;main program

rjmp W8BH ;!! go to new main program

;***

;* W8BH - INITIALIZATION CODE

;***

; Before compiling, manually make the following changes to the source code:

; 1. Add/Change the following register definitions:

; .def release = R21

; .def hold = R15

; 2. In .dseg, add the following line

; mode: .byte 1 ; 0=tuning mode; 1=button test

W8BH:

 ldi temp1,$03 ;binary 0000.0011

 out DDRB,temp1 ;set PB0,1 as output

 ldi temp1,$3C ;binary 0011.1100

 out PORTB,temp1 ;set pullups on PB2-5

 ldi temp1,$A3 ;b1010.0011 (add bit PD7)

 out DDRD,temp1 ;set PD0,1,5,7 outputs

; rcall InitPreset ;frequency presets

 clr temp1

 sts mode,temp1 ;start mode0 = normal operation

 sts flags,temp1 ;nothing to flag yet

10 Extending Encoder Button Functionality

 ldi temp1, $07 ;set timer2 prescale divider to 1024

 sts TCCR2B,temp1

 ldi temp1, $01 ;enable TIMER2 overflow interrupt

 sts TIMSK2,temp1

;***

;* W8BH - REVISED MAIN PROGRAM LOOP

;***

MAIN:

 rcall CheckEncoder ;check for encoder action

 rcall CheckButton ;check for button events

 rcall CheckHold ;check for button holds

; rcall Keypad ;check for keypad action

 rjmp Main ;loop forever

CHECKENCODER:

 tst encoder ;any encoder requests?

 breq ce9 ;no, so quit

 lds temp1,mode

 cpi temp1,0 ;are we in normal mode (0)?

 brne ce1 ;no, skip

 rcall EncoderMode0 ;yes, handle it

 rjmp ce9

ce1: cpi temp1,1 ;are we in mode 1?

 brne ce2 ;no, skip

; rcall EncoderMode1 ;yes, handle it

 rjmp ce9

ce2: cpi temp1,2 ;are we in mode 2?

 brne ce3 ;no, skip

; rcall EncoderMode2 ;yes, handle it

 rjmp ce9

ce3:

ce9: ret

CHECKHOLD:

 tst hold ;any new hold event?

 brpl ck1 ;no, so quit

 lds temp1,flags

 sbr temp1,$01 ;flag the hold

 sts flags,temp1 ;save it

 rcall ButtonHoldDown ;do the hold event

 clr hold ;reset = allow future holds

ck1: ret

CHECKBUTTON:

 tst press ;any button down events?

 breq cb1 ;no, check for button up events?

 rcall ButtonTapDown ;do the button down

 dec press ;one less button tap to do

11 Extending Encoder Button Functionality

cb1: tst release ;any button up events?

 breq cb4 ;no, so quit

 lds temp1,flags

 sbrs temp1,0 ;is there a hold in progress?

 rjmp cb2 ;no

 cbr temp1,$01 ;yes, remove hold flag

 sts flags,temp1 ;save un-held state

 rcall ButtonHoldUp ;do hold release

 rjmp cb3

cb2: rcall ButtonTapUp ;do the Tap Release

cb3: dec release ;one less release to do

cb4: ret

BUTTONTAPUP:

 lds temp1,mode ;get mode

 cpi temp1,0 ;are we in mode0?

 brne tu1 ;no, skip

; rcall TapUp0 ;yes, handle it

 rjmp tu9

tu1: cpi temp1,1 ;are we in mode1?

 brne tu2 ;no, skip

 rcall TapUp1 ;yes, handle it

 rjmp tu9

tu2: cpi temp1,2 ;are we in mode2?

 brne tu3 ;no, skip

; rcall TapUp2 ;yes, handle it

 rjmp tu9

tu3: ;placeholder for higher modes

tu9: ret

BUTTONTAPDOWN:

 lds temp1,mode ;get mode

 cpi temp1,0 ;are we in mode0?

 brne td1 ;no, skip

 rcall TapDown0 ;yes, handle it

 rjmp td9

td1: cpi temp1,1 ;are we in mode1?

 brne td2 ;no, skip

 rcall TapDown1 ;yes, handle it

 rjmp td9

td2: cpi temp1,2 ;are we in mode2?

 brne td3 ;no, skip

; rcall TapDown2 ;yes, handle it

 rjmp td9

td3: ;placeholder for higher modes

td9: ret

BUTTONHOLDUP:

 lds temp1,mode ;get mode

 cpi temp1,0 ;are we in mode0?

 brne hu1 ;no, skip

; rcall HoldUp0 ;yes, handle it

 rjmp hu9

hu1: cpi temp1,1 ;are we in mode1?

12 Extending Encoder Button Functionality

 brne hu2 ;no, skip

 rcall HoldUp1 ;yes, handle it

 rjmp hu9

hu2: cpi temp1,2 ;are we in mode2?

 brne hu3 ;no, skip

; rcall HoldUp2 ;yes, handle it

 rjmp hu9

hu3: ;placeholder for higher modes

hu9: ret

BUTTONHOLDDOWN:

 lds temp1,mode ;get mode

 cpi temp1,0 ;are we in mode0?

 brne hd1 ;no, skip

 rcall HoldDown0 ;yes, handle it

 rjmp td9

hd1: cpi temp1,1 ;are we in mode1?

 brne hd2 ;no, skip

 rcall HoldDown1 ;yes, handle it

 rjmp hd9

hd2: cpi temp1,2 ;are we in mode2?

 brne hd3 ;no, skip

; rcall HoldDown2 ;yes, handle it

 rjmp hd9

hd3:

hd9: ret

CHANGEMODE:

; call this routine with new mode in temp1

; only action is to change the message on Line 1

 sts mode,temp1 ;save the new mode

 cpi temp1,0 ;mode 0?

 brne cm1 ;no, skip

 inc temp1

 rcall DisplayLine1 ;yes, show normal title

 rjmp cm9

cm1: cpi temp1,1 ;mode 1?

 brne cm2 ;no, skip

 inc temp1

 rcall DisplayLine1 ;yes, show mode 1 title

 rjmp cm9

cm2: cpi temp1,2 ;mode 2?

 brne cm3 ;no, skip

 inc temp1

 rcall DisplayLine1 ;yes, show mode 2 title

 rjmp cm9

cm3: ;placeholder for higher modes

cm9: ret

QUICKBLINK:

 cbi PORTC,LED ;turn LED on

 ldi delay,15 ;keep on 20 ms

 rcall wait

13 Extending Encoder Button Functionality

 sbi PORTC,LED ;turn LED off

 ret

;***

;* W8BH - MODE 0 (NORMAL MODE) ROUTINES

;***

ENCODERMODE0:

; This code taken from original program loop.

; Called when there is a non-zero value for encoder variable.

; Negative encoder values = encoder has turned CCW

; Positive encoder values = encoder has turned CW

; In mode 0, encoder should increase/decrease the DDS freq

 tst encoder

 brpl e02 ;which way did encoder rotate?

 inc encoder ;remove 1 negative rotation

 rcall DecFreq0 ;reduce displayed frequency

 cpi temp1,55 ;55 = all OK

 brne e01

 rcall IncFreq0 ;correct freq. underflow

 rjmp e05

e01: rcall DecFreq9 ;reduce magic number

 rjmp e04

e02: dec encoder ;remove 1 positive rotation

 rcall IncFreq0 ;increase displayed frequency

 cpi temp1,55 ;55 = all OK

 brne e03

 rcall DecFreq0 ;correct freq. overflow

 rjmp e05

e03: rcall IncFreq9 ;increase magic number

e04: rcall FREQ_OUT ;update the DDS

 rcall ShowFreq ;display new frequency

e05: rcall QuickBlink

 ret

TAPDOWN0:

; This code taken from original program loop.

; Called when there is a non-zero value for press variable.

; Non-zero value = number of times button has been pressed

; In mode 0, button should advance cursor to the right

 tst encoder ;check for pending encoder requests

 brne b01 ;dont advance cursor until encoder done

 dec StepRate ;advance cursor position variable

 brpl b01 ;position >= 0 (Hz position)

 ldi StepRate,7 ;no, so go back to 10MHz position

b01: rcall ShowCursor

 rcall QuickBlink ;flash the LED

 ret

14 Extending Encoder Button Functionality

HOLDDOWN0:

; Called when button has been held down for about 1.6 seconds.

; In mode 0, action should be to invoke mode1 = scrolling freq. presets

 ldi temp1,1

 rcall ChangeMode ;go to next mode

 rcall ClearLine2

 ret

;***

;* W8BH - MODE 1 ROUTINES

;***

TapDown1:

 ldi temp1,5 ;Display ‘TAP DOWN’

 rjmp dd1

TapUp1:

 ldi temp1,6 ;Display ‘TAP RELEASE’

 rjmp dd1

HoldDown1:

 ldi temp1,7 ;Display ‘HOLD DOWN’

 rjmp dd1

HoldUp1:

 ldi temp1,8 ;Display ‘HOLD RELEASE’

dd1: rcall QuickBlink

 rcall DisplayLine2

 ret

;***

;* W8BH - Timer 2 Overflow Interrupt Handler

;***

; This handler is called every 8 ms @ 20.48MHz clock

; Increments HOLD counter (max 128) when button held

; Resets HOLD counter if button released before hold met

; Sets hold & down flags in button state register.

OVF2:

 push temp1

 in temp1,SREG ;save status register

 push temp1

 ldi temp1,90 ;256-90=160; 160*50us = 8ms

 sts TCNT2,temp1 ;reduce cycle time to 8 ms

 tst hold ;counter at max yet?

 brmi ov1 ;not yet

 sbic pinD,PD3

 clr hold ;if button is up, then clear

 sbis pinD,PD3

 inc hold ;if button is down, then count

ov1: pop temp1

 out SREG,temp1 ;restore status register

 pop temp1

 reti

15 Extending Encoder Button Functionality

;***

;* W8BH - External Interrupt 1 Handler

;***

; This handler is replaces the original EXT_INT1 code

; It is called when a logic-level change on the

; external interrupt 1 (pushbutton) pin occurs.

; Press is incremented on button-down events.

; Release is incremented on button-up events.

EINT1:

 push temp1 ;save temp1 register

 in temp1,SREG

 push temp1 ;save status register

 lds temp1,EICRa ;get interrupt control register

 sbrs temp1,2 ;bit2: rising edge =0, falling edge =1

 rjmp ei1

 ;here is the falling-edge code

 cbr temp1,$04 ;falling edge '11' -> rising edge '10'

 inc release ;count the button-up

 rjmp ei2

 ;here is the rising-edge code

ei1: sbr temp1,$04 ;rising edge '10' -> falling edge '11'

 inc press ;count the button-down

ei2: sts EICRa,temp1 ;save interrupt control register

 pop temp1

 out SREG,temp1 ;restore status register

 pop temp1 ;restore temp1 register

 reti

;***

;* W8BH - External Interrupt 0 Handler

;***

; This handler is replaces the original EXT_INT0 code

; It is called when a logic-level change on the

; external interrupt 0 (encoder state) pin occurs.

; Press is incremented on button-down events.

; Release is incremented on button-up events.

EINT0:

 push temp1 ;save temp1 register

 in temp1,SREG ;save the status register

 push temp1

 lds temp1,EICRA ;get current interrupt mode

 sbrs temp1,0 ;is mode rising-edge?

 rjmp i02 ;no, so go to falling edge (bit0=0)

 cbr temp1,$01 ;yes, clear bit 0

 sts EICRA,temp1 ;change mode to falling-edge

 sbis PIND,PHASE ;is PHASE=1?

 rjmp i01 ;no, increase encoder (CW rotation)

 dec encoder ;yes, decrease encoder (CCW rotation)

 rjmp i04

i01: inc encoder

 rjmp i04

i02: ;current mode = falling-edge

16 Extending Encoder Button Functionality

 sbr temp1,$01 ;set bit 0

 sts EICRA,temp1 ;change mode to rising-edge

 sbis PIND,PHASE ;is PHASE=1?

 rjmp i03 ;no, decrease encoder (CCW rotation)

 inc encoder ;yes, increase encoder (CW rotation)

 rjmp i04

i03: dec encoder

i04: pop temp1

 out SREG,temp1 ;restore the status register

 pop temp1 ;restore temp1 register

 reti

;***

;* W8BH - Message Display routines

;***

;DISPLAYMSG:

; displays a null-terminated message on line 1

; call with pointer to message in Z

; ldi temp1,$80 ;use line 1

; rcall LCDCMD

; rcall DISPLAY_LINE ;display the message

; ldi StepRate,3 ;put cursor at KHz posn

; rcall ShowCursor

; ret

DISPLAYLINE1:

; displays a 16-character msg on line 1

; call with msg# in temp1

 mov temp2,temp1

 ldi temp1,$80 ;use line 1

 rcall LCDCMD

 rcall DISPLAY16 ;send 16 characters

 ret

DISPLAYLINE2:

; displays a 16-character msg on line 2

; call with msg# in temp1

 mov temp2,temp1

 ldi temp1,$C0 ;use line 2

 rcall LCDCMD

 rcall DISPLAY16 ;send 16 characters

 ret

DISPLAY16:

; displays a 16-character msg

; call with msg# in temp2

 ldi ZH,high(messages*2-16)

 ldi ZL,low(messages*2-16)

17 Extending Encoder Button Functionality

di1: adiw Z,16 ;add 16 for each message

 dec temp2 ;add enough?

 brne di1 ;no, add some more

 ldi temp3,16 ;16 characters

di2: lpm temp1,Z+ ;get the next character

 rcall LCDCHR ;put character on LCD

 dec temp3 ;all 16 chars sent?

 brne di2 ;no, so repeat

 ret

CLEARLINE2:

 ldi temp1,$C0

 rcall LCDCMD

 ldi temp3,16

cl1: ldi temp1,' '

 rcall LCDCHR

 dec temp3

 brne cl1

 ret

;***

;* W8BH - END OF INSERTED CODE

;***

; 1234567890123456789012345678901234567890

msg1:

.db "Kits and Parts",0,0

messages:

.db "W8BH – Mode 0 " ;1

.db "Button Test Mode" ;2

.db "Mode 3 " ;3

.db "Mode 4 " ;4

.db " TAP DOWN " ;5

.db " TAP RELEASE " ;6

.db " HOLD DOWN " ;7

.db " HOLD RELEASE " ;8

.db " -5----- " ;9

