

Add a Keypad

to your DDS Development Kit

By Bruce Hall, W8BH

The DDS kit by W8DIZ is a real beauty. Built-in encoder, dual outputs, 0-30MHz range, LCD

display, ready to pop in your latest radio project. Go ahead. But if you are like me, you like to

get under the hood and tinker a bit. See what makes it tick. The following experiments in this

eight-part series will show how to interface a keypad in a simple, from-the-ground-up

approach. If you just want the end result, skip to the final code. But if you want to see how I

learned to do it, step by step, keep reading.

It‟s hard to know exactly where to start. I downloaded and read a very nice tutorial at www.avr-

asm-tutorial.net. For the uninitiated it can be overwhelming. But if you have any programming

experience you will understand the concepts pretty well. Look at some sample code for making

an LED blink. Turn the LED pin on, wait, turn the pin off, wait, and repeat. Simple, right? Now

download and print the DDS kit source code at w8diz.com/qq-fc-project/ATmega88PA/. Yes, I

said print. Find the routine called Blink_LED. Spend some time reading the code and

annotating the printout, figuring out what each section does. Some parts will be nearly

impossible at first glance, others easy. Find the main program loop, which goes from „main

program‟ to „rjmp menu‟. After staring at it for a while, you‟ll realize that all it does is check for

encoder data and button presses. Sure, lots of jumping here and there, but nothing

conceptually difficult.

Let me speed through the really time-consuming parts. First, you need to get an AVRISP-II

programming cable, available at DigiKey [ATAVRISP2-ND] for about $35. When I was ordering

the cable I also ordered a few spare ATmega88 chips. I didn‟t want to ruin the pre-programmed

chip that came with my kit. Next, download AVR Studio 4 from the Atmel website at

http://www.atmel.com/dyn/products/tools_card.asp?tool_id=2725. While waiting for the

hardware, I spent quite a few hours poring over the source code, trying to figure out the nitty-

gritty details. The more time you spend on it, the better. Learn how to use AVR studio and your

programmer. Pat yourself on the back when you can put a blank chip in your kit, set the fuses,

program it with the source code, and watch it come to life. Let the fun begin!

The first step for me was figuring out how to physically connect the keypad. The easiest way is

connecting each of the 4 row and 3 column lines to a microcontroller pin. Are there enough I/O

pins available? Here is a table of the ATmega88‟s I/O pins and how they are used in your DDS

2 Add a keypad – W8BH

kit. The available pins I will use for row & column connections are marked in red.

Of the 22 total I/O lines (not
counting RESET), your DDS board
uses 12, leaving your with 10 I/O
lines to play with. We only need 7,
so we are in good shape. These
lines are brought out and
conveniently labeled for you in the
center of the board. I picked the
bottom seven lines, PD7 and PB0
through PB5, since they were all
available.

Now that we know where to physically attach the
keyboard, let‟s start to program. Before we use
any I/O pins we must define them as inputs or
outputs. This is done by writing to the Port‟s data
direction register. In this keypad implementation
we are going to (arbitrarily) assign the columns as
outputs and rows as inputs. You could do it the
other way around, if you wanted.

Here is the first bit of code:

 ;***

 ;* PORT B&D INITIALIZATION for KEYPAD

;***

ldi temp1,$03 ;binary 0000.0011

 out DDRB,temp1 ;set PB0,1 as output

 ldi temp1,$3C ;binary 0011.1100

 out PORTB,temp1 ;set pullups on PB2-5

ldi temp1,$A3 ;b1010.0011 (add bit PD7)

 out DDRD,temp1 ;set PD0,1,5,7 outputs

This code replaces the two existing code lines (ldi temp1,$a3; out DDRD,temp1) in the „init port‟

section of your source code. These 6 lines of code contain 3 sets of 2. In each set, we load a

register with a value, and then in output that value to a port. The first 2 lines we send a value to

the Data Direction Port B (DDRB), which specifies for each port B bit whether it is an input or an

output. To make a bit an output, we send a „1‟ to the corresponding bit in the DDRB. The value

00000011 sets the lowest 2 bits in the port B register (PB0 and PB1) as outputs, and the

Bit Number Port B Port C Port D

0 (AVAIL: c2) LCD DDS
1 (AVAIL: c3) LCD DDS

2 (AVAIL: r1) LCD Encoder
3 (AVAIL: r2) Led Encoder
4 (AVAIL: r3) (AVAIL) Encoder
5 (AVAIL: r4) (AVAIL) DDS
6 xtal --- (AVAIL)
7 xtal --- (AVAIL: c1)

3 Add a keypad - W8BH

remainder as inputs. The output pins correspond to what we‟ve assigned to column 2 and

column 3.

The next two lines of code enable internal pull-up resistors on Port B, bits 2 through 5. Internal

pull-ups are activated by writing to an input pin. Here we are outputting the value 00111100,

which activates 4 pull-ups resistors (the four „1‟ values) on bits 2 through 5. The internal pull-

ups allow us to keep the inactive row inputs at a logic 1 state, unless brought low by an actively-

low column.

The last two lines set the PD7 pin as an output. But the DDS kit also uses three other outputs

on port D, so we must include them, too.

Our first 6 lines don‟t actively do anything – they just configure the pins that we want use with

our keypad. Now that we‟ve finished that chore, let‟s try something more interesting.

A beginner‟s first program conventionally displays „Hello, world‟. And a microcontroller‟s version

of hello world is to blink an LED. So that‟s the first thing I tried to do on my kit. Here is the

code:

;**

;* Experiment #1

;* Make the LED flash.

;**

KEYPAD:

 ldi temp1,1 ;set up for 1 blink

 rcall blink_led ;already programmed for us!

 ret

You can put this code just about anywhere. I inserted it just after the main program loop, and

before the label „DISPLAY_LINE‟. This code won‟t work by itself. You must call this routine

periodically from somewhere else. And a great place to call it from is the main program loop.

After „menu9:‟ and before „rjmp menu‟, insert the following line:

 rcall keypad ;check for keypad entry

Now assemble your new source code, attach your programming cable, and program the

ATmega88. You should see the LED blink now. Of course, this is not very useful, and in fact it

slows down your system so that the encoder will not work too well. But, you have verified that

your programming method is working, and you now have a great starting point to build your

code.

The next few experiments will control the LED, based on keypad input.

Experiment #2

My first „real‟ experiment on this kit was to make the LED blink whenever a row input (PB5)

when to ground. We only need to add one extra instruction. Easy! Here is the code:

4 Add a keypad – W8BH

;**

;* Experiment #2

;* tap PB5 to ground and watch LED flash.

;**

KEYPAD:

 ldi temp1,1 ;set up for 1 blink

 sbis PinB,PB5 ;don‟t blink if PB5 is 1

 rcall Blink_led ;get here only if PB5 is 0

 ret

There are several different ways to check an input pin, and do something based on the input. I

am using the „sbis‟ instruction here, which skips the following instruction if the bit is set (1). Our

next instruction is to blink, so we blink only if the bit is clear (0).

Now assemble the code and program your chip, as before. Each time you bring PB5 to ground,

the LED should blink.

Writing code is interesting, but building is better! Now that the row inputs are finally getting

action, I decided to start wiring the keypad. I already had machine pin sockets soldered on my

board, so it was easy to plug in 24 gauge solid hookup wires (Cat5 cable works great). But I

also wanted to use rainbow ribbon cable to connect the keypad to the DDS. Add some solder

and heat-shrink tubing, and you have a flexible

way of connecting your wires to any available pin.

Here is a photo of all seven keypad wires attached

to the DDS board:

If you have gotten to this point, the rest is easy –

and fun! You have a place to do your own

experimenting. Try blinking twice instead of once.

Try using one of the other row inputs.

In the next part, we will connect multiple row

inputs, and use the software to determine which

row was selected.

By the way, at some point you will want to see all of the instructions available to you. Visit the

ATMEL website and look at the

datasheet for the ATmega88 chip.

Here are the links:

 32 page summary:

http://www.atmel.com/dyn/resource

s/prod_documents/8271S.pdf

 562 page complete:

http://www.atmel.com/dyn/resource

s/prod_documents/doc8271.pdf

http://www.atmel.com/dyn/resources/prod_documents/8271S.pdf
http://www.atmel.com/dyn/resources/prod_documents/8271S.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc8271.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc8271.pdf

5 Add a keypad - W8BH

 Instruction set manual:

http://www.atmel.com/dyn/resources/prod_documents/doc0856.pdf

Experiment #3

OK, now you are comfortable with programming your chip, and have poked around the source

code a bit. After I got to this point, I wanted to see if I could look at the row inputs and figure out

which one was being grounded. But how would I display the answer? Write it out to the LCD?

I think in Morse code more than RTTY, so I decided to blink the LED with the pin number

instead. Here is the code I tried:

;**

;* Experiment #3

;* tap PB2-5 to ground and

;* watch LED flash the pin#.

;**

KEYPAD:

 ldi temp1,0 ;assume no row input

 sbis pinB,PB2 ;is PB2 low?

 ldi temp1,2 ;yes, 2 blinks

 sbis pinB,PB3 ;is PB3 low?

 ldi temp1,3 ;yes, 3 blinks

 sbis pinB,PB4 ;is PB4 low?

 ldi temp1,4 ;yes, 4 blinks

 sbis pinB,PB5 ;is PB5 low?

 ldi temp1,5 ;yes, 5 blinks

 tst temp1 ;how many blinks?

 breq kp1 ;if none, we‟re done

 rcall Blink_LED ;do the blinking

kp1:

 ret

OK, OK, I am being less than honest here. This is not exactly what I tried. My first version of

experiment #3 did not check for „number of blinks = 0‟. I ran it and my little LED just blinked

away. The problem is that calling blink_led with a value of 0 will result in 256 blinks. Take out

the two lines „tst temp1; breq kp1‟ for fun and you‟ll see what I mean.

So how does it work? Notice that most of this code is exactly like experiment #2: Load a value

in temp1, then skip the following instruction if the bit is set. I‟ve just extended it for four different

pins, and adjusted the number of blinks according to the pin that was brought low.

Your code at this point is the foundation of a decent keypad routine. Now you have a good way

to decode the rows inputs. All you need now is to take the column pins low, one at a time, and

see if any of the rows go low.

http://www.atmel.com/dyn/resources/prod_documents/doc0856.pdf

6 Add a keypad – W8BH

That sounds easy, but it was still too much for my brain when I started to type into the code

editor. So I went for something simpler. What about taking a single column low, and then

looking for an active row? Take a break to build something, and then go on to experiment 4!

Get your keypad ready

My junkbox keypad was given to me by none other than W8DIZ. He put it in the bag of parts for

the FDIM buildathon project he hosted. Since then I‟ve wondered what I‟d use it for.

The keypad was attached to a pulse dialer circuit board. I disconnected the board and ribbon

cable, solder-wicked the pads, then attached a 10-pin male header to the keypad. The header

allows me to connect the keypad directly to a

solderless breadboard for testing, or to a

socketed rainbow ribbon cable I used for this

project. Did you know that ribbon cable

colors are in resistor color-code order?

By the way, this keypad is +12V backlit with

translucent keys. Very nice.

Let‟s see if we can add a column outputs and a pushbutton or two from our keypad. If you

haven‟t found yourself a keypad yet, now is the time.

7 Add a keypad - W8BH

Experiment #4

;************************************

;* Experiment #4

;*

;* Put a pushbutton

;* switch between PD7 and one of PB2-5.

;*

;* Press the switch and the LED should

;* flash the PortB pin#

;************************************

KEYPAD:

 cbi PORTD,PD7 ;take column output low

 rcall ScanRow ;see if a row goes low

 sbi PORTD,PD7 ;restore column output high

 ret

SCANROW:

 ldi temp1,0 ;assume no row input

 sbis pinB,PB2 ;is PB2 low?

 ldi temp1,2 ;yes, 2 blinks

 sbis pinB,PB3 ;is PB3 low?

 ldi temp1,3 ;yes, 3 blinks

 sbis pinB,PB4 ;is PB4 low?

 ldi temp1,4 ;yes, 4 blinks

 sbis pinB,PB5 ;is PB5 low?

 ldi temp1,5 ;yes, 5 blinks

 tst temp1 ;how many blinks?

 breq kp1 ;if none, we‟re done

 rcall blink_led ;do the blinking

kp1:

 ret

The first thing to notice is that I didn‟t make many changes from the last experiment. I renamed

Keypad to ScanRow, and added a four instruction section to briefly take a column output low.

The only difference is that instead of touching a row input to ground, we can now touch to a

column output. Add 2 more column outputs to the mix, and we‟ve got ourselves enough

connections for a full 3x4 keypad.

My next step was mostly just thinking. How can you go from row and columns to an output

value, like 1 through 12? I searched the internet and there are many sorts of keypad

algorithms. Even Atmel, creator of the AVR chips, publishes several examples. See

http://www.atmel.com/dyn/resources/prod_documents/doc1232.pdf for my favorite.

I could have tried using a published example, but I find that starting small and building my code

step-by-step gives me the confidence I need to keep coding. Do you like to build a whole radio,

start-to-finish, and then flip the switch? Or do you prefer to build the oscillator, then the mixer,

http://www.atmel.com/dyn/resources/prod_documents/doc1232.pdf

8 Add a keypad – W8BH

etc, and test as you go? So I decided to forget the published

methods and roll my own. You may decide differently. You have

choices here.

Looking at a keypad, you‟ll notice that columns increment the value

by one, and that rows increment the value by 3. For example, in

column 1, going from row1 to row2 changes the value from 1 to 4.

So a reasonable approach would be to assign a preliminary value of 1-3, based on the column

you are currently scanning, and then add 0 for row1, add 3 for row2, add 6 for row3, and add 9

for row4. This will give you an output of 1-12, and we can fix up the zero later. Try

programming it this way. There are a few examples online for you to look at.

Oops. There is funny quirk to the AVR instruction set: there is *no* instruction for adding an

immediate value. So you can‟t „add 3‟, like I suggested above. What are the workarounds?

You could put your value of 3 in another register, and add the registers together. Or, you could

subtract -3, the two‟s complement of 3. Both ways bothered me a bit. Could I find another

way?

Here is my oddball solution: instead of looking for a positive 1

to 12 result, let‟s see if we can get a negative 1 to 12 result.

Can we come up with row and column values, when

subtracted (not added), give a matrix of negatives values

instead? In fact, yes we can. Here is a matrix of negative

values, shown in blue, derived by subtracting the row from the

column values shown in brown. Now we no longer need to subtract negative numbers, or use

an extra register. All we need to do is negate the final answer. There are simpler ways for sure,

but this way works and I like it. The code for it was my next experiment.

Experiment #5

;************************************

;* Experiment #5: Add the Keypad!

;*

;* 7-wire interface:

;* Row1 to PB5, Row2 to PB4,

;* Row3 to PB3, Row1 to PB2,

;* Col0 to PD7, Col1 to PB1,

;* Col2 to PB0

;*

;************************************

KEYPAD:

 cbi PORTD,PD7 ;take column1 low

 ldi temp1,2 ;col1 value is 2

1 2 3

4 5 6

7 8 9

* 0 #

 2 1 0

3 -1 -2 -3

6 -4 -5 -6

9 -7 -8 -9

12 -10 -11 -12

9 Add a keypad - W8BH

 rcall ScanRow ;see if a row went low

 sbi PORTD,PD7 ;restore column1 high

 cbi PORTB,PB0 ;take column2 low

 ldi temp1,1 ;col2 value is 1

 rcall ScanRow ;see if a row went low

 sbi PORTB,PB0 ;restore col2 high

 cbi PORTB,PB1 ;take column3 low

 ldi temp1,0 ;col3 value is 0

 rcall ScanRow ;see if a row went low

 sbi PORTB,PB1 ;restore column3 high

 ret

SCANROW:

 clc ;clear carry

 sbis pinB,PB5 ;is row1 low?

 subi temp1,3 ;yes, subtract 3

 sbis pinB,PB4 ;is row2 low?

 subi temp1,6 ;yes, subtract 6

 sbis pinB,PB3 ;is row3 low?

 subi temp1,9 ;yes, subtract 9

 sbis pinB,PB2 ;is row4 low?

 subi temp1,12 ;yes, subtract 12

 brcc kp1 ;no carry = no keypress

 neg temp1 ;negate answer

 rcall Blink_LED ;let‟s see it!

kp1: ret

Compare this code to Experiment #4. We haven‟t actually added much at all. The whole

keypad decoder is only 26 lines. Like I said before, most of it was just a thinking exercise. In

Keypad, we‟ve added lines to set each of the columns low, not just a single line. And we‟ve

assigned values of 2,1,0 to the columns and 3,6,9,12 to the rows. Review the last part of this

series for why I used those values.

But sheesh, what are all those subi/sbis instructions? The sbis instruction is what we‟ve used

all along to check the rows. The new subi instructions “subtract immediate” just subtracts our

row-column numbers to get the keypress value, albeit in a negative form. We correct that with

the „neg temp1‟ instruction near the end.

It is finally time to hook up that keypad. Figure out which lines are which on your keypad, and

connect the lines to the row/column pins as indicated in the code comments above. My keypad

pinout is (BkLight, C2, R1, C1, R4, C3, R3, R2, nc, GND). Yours is probably different. Hook it

up and try it out.

Finally we have something useful attached to our DDS kit. Too bad it just flashes at us! And it

doesn‟t even get zero right. Integrating our keyboard with the DDS is the topic of Experiment

#6.

10 Add a keypad – W8BH

Experiment #5 extras

Did all of that subtraction and negativity bother you? There are other ways to tackle the

problem. I tried a few ideas of my own, and found one that I like better than the original. If you

are a code junkie, read on. Otherwise you can skip this section!

Idea #1: Just use all positive values, the way they are supposed to be. Set the column values

to 1, 2, and 3. We‟ll get around the lack of an „add immediate‟ instruction by loading the value

into another register (temp3), and then adding it later. You might start out with something like

this:

SCANROW:

 sbis pinB,PB5 ;is row1 low?

 ldi temp3,0 ;yes, add 0

 sbis pinB,PB4 ;is row2 low?

 ldi temp3,3 ;yes, add 3

 sbis pinB,PB3 ;is row3 low?

 ldi temp3,6 ;yes, add 6

 sbis pinB,PB2 ;is row4 low?

 ldi temp3,9 ;yes, add 9

 add temp1,temp3 ;add row & columns

 tst temp1 ;find a row match?

 breq kp1 ;zero = no match

 rcall Blink_LED ;show result

kp1: ret

Too bad it doesn‟t work! The problem is that the value of temp1 will always be greater than

zero (it was set by the columns), so the LED will always be blinking.

Idea #2: Add 3 to the row values, then check to see if the final result was greater than three. If

it was, then you know that you‟ve found a row, and you can subtract the excess. This one

works, and you can use it if you like:

SCANROW:

 ldi temp3,3

 sbis pinB,PB5 ;is row1 low?

 add temp1,temp3 ;yes, add 3 (not 0)

 ldi temp3,6

 sbis pinB,PB4 ;is row2 low?

 add temp1,temp3 ;yes, add 6 (not 3)

 ldi temp3,9

 sbis pinB,PB3 ;is row3 low?

 add temp1,temp3 ;yes, add 9 (not 6)

 ldi temp3,12

 sbis pinB,PB2 ;is row4 low?

 add temp1,temp3 ;yes, add 12 (not 9)

 ;valid key values are 4-15

11 Add a keypad - W8BH

 cpi temp1,4 ;is value 4 or more?

 brlo kp1 ;less than 4 = no active row

 subi temp1,3 ;remove the excess

 rcall Blink_LED ;let‟s see it!

kp1: ret

Idea #3: Don‟t use any addition or subtraction tricks, just jump to the „success‟ part of the code
on any row match. We only do the addition once. Very jumpy, but it works, too:

SCANROW:

 ldi temp3,0 ;set up row1 value (0)

 sbis pinB,PB5 ;is row1 active?

 rjmp kp1 ;yes, so do it

 ldi temp3,3 ;set up row2 value (3)

 sbis pinB,PB4 ;is row2 active?

 rjmp kp1 ;yes, so do it

 ldi temp3,6 ;set up row3 value (6)

 sbis pinB,PB3 ;is row3 low?

 rjmp kp1 ;yes, so do it

 ldi temp3,9 ;set up row4 value (9)

 sbis pinB,PB2 ;is row4 low?

 rjmp kp1 ;yes, so do it

 rjmp kp2 ;got here = no row match

kp1: add temp1,temp3 ;success: add column value

 rcall Blink_LED ;and show result

kp2: ret

Idea #4: What about making the column values negative, and then adding them to the row if
there is a match? If the final result was greater than zero, you found a row match. [Note: to use
this routine, you‟ll need to modify the column values in the keypad routine to col1 = -2, col2 = -1,
col3 = 0]

SCANROW:

 ldi temp3,-1 ;assume no row match

 sbis pinB,PB5 ;is row1 low?

 ldi temp3,3 ;yes, add 3

 sbis pinB,PB4 ;is row2 low?

 ldi temp3,6 ;yes, add 6

 sbis pinB,PB3 ;is row3 low?

 ldi temp3,9 ;yes, add 9

 sbis pinB,PB2 ;is row4 low?

 ldi temp3,12 ;yes, add 12

 add temp1,temp3 ;add row & column

 brmi kp1 ;negative = no match

 rcall Blink_LED ;show result

kp1: ret

That‟s pretty compact. But wait, why subtract three from the columns, then add it right back
when we get to the rows?

12 Add a keypad – W8BH

Idea #5: Based on idea #4, but let‟s put the column values back to 1, 2, and 3. Adjust the row
values accordingly:

SCANROW:

 ldi temp3,-1 ;assume no row match

 sbis pinB,PB5 ;is row1 low?

 ldi temp3,0 ;yes, add 0

 sbis pinB,PB4 ;is row2 low?

 ldi temp3,3 ;yes, add 3

 sbis pinB,PB3 ;is row3 low?

 ldi temp3,6 ;yes, add 6

 sbis pinB,PB2 ;is row4 low?

 ldi temp3,9 ;yes, add 9

 tst temp3 ;find a row match?

 brmi kp1 ;negative = no match

 add temp1,temp3 ;add row & column

 rcall Blink_LED ;show result

kp1: ret

Now we have a nice routine that uses positive values. Compared to the original it takes an
extra line of code, but is easier to read and more intuitive. I think I‟ll use it! Notice how close it
is to idea #1, which didn‟t work. Sometimes you just have to try out a bunch of ideas and see
what happens.

Our keypad decoder is finished, but it doesn‟t interact with the DDS at all. It‟s time to start

integrating.

Experiment #6

After finishing the keypad decoder, it is time to think again. What small thing can we make our

keypad do? I decided that trying to enter frequencies was too hard at this point. But moving the

cursor sounded easy. No numbers to worry about. The source code already does it for you,

somehow, every time you press down on the encoder knob. So I looked at the main program

loop again for the part where it checks for encoder knob presses. Can you find it? It is labeled

„menu 5‟. I‟ll reproduce it here, with added comments:

Menu5:

 tst press ;are there any knob presses?

 breq menu9 ;no, so we are done

 dec press ;yes, so decrease count of presses

 … ;and do what we need to do

All we need to do is emulate a knob press. And the only thing a knob press does is increment

a register labeled „press‟. The main program loop will handle the rest.

13 Add a keypad - W8BH

;**

;* Experiment #6: Emulate encoder knob press.

;

;* KEYPAD CONNECTIONS:

;* Row1 to PB5, Row2 to BP4,

;* Row3 to PB3, Row4 to PB2,

;* Col0 to PD7, Col1 to PB1, Col2 to PB0

;*

;* Moves cursor right when „#‟ pressed,

;* Otherwise LED flashes the keypad value

;*

;***

KEYPAD:

 cbi PORTD,PD7 ;take column1 low

 ldi temp1,2 ;col1 value is 2

 rcall ScanRows ;see if a row went low

 sbi PORTD,PD7 ;restore column1 high

 cbi PORTB,PB0 ;take column2 low

 ldi temp1,1 ;col2 value is 1

 rcall ScanRows ;see if a row went low

 sbi PORTB,PB0 ;restore col2 high

 cbi PORTB,PB1 ;take column3 low

 ldi temp1,0 ;col3 value is 0

 rcall ScanRows ;see if a row went low

 sbi PORTB,PB1 ;restore column3 high

 ret

SCANROWS:

 clc ;clear carry

 sbis pinB,PB5 ;is row1 low?

 subi temp1,3 ;yes, subtract 3

 sbis pinB,PB4 ;is row2 low?

 subi temp1,6 ;yes, subtract 6

 sbis pinB,PB3 ;is row3 low?

 subi temp1,9 ;yes, subtract 9

 sbis pinB,PB2 ;is row4 low?

 subi temp1,12 ;yes, subtract 12

 brcc kp1 ;no carry = no keypress

 neg temp1 ;negate answer

 rcall PadCommand ;do something

kp1:

 ret

PadCommand:

 cpi temp1,12 ;special case: "#" = cursor right

 brne kp2 ;not the # command

 ldi temp1,1 ;allow 1 blink for debouncing

 inc press ;increment the keypress

kp2:

 rcall Blink_LED ;blink for everything else.

 ret

14 Add a keypad – W8BH

The only new code is PadCommand at the end. It looks to see if „#‟ has been pressed. Instead

of flashing 12 times, it increments the press register instead. The main program loop will think

the knob button has been pressed, and will do what it needs to do to advance the cursor.

Emulating the encoder button saved us a lot of programming time. We didn‟t have to know how

to move the cursor – we let the existing code do that for us. Can we emulate the encoder

rotation, too? See for yourself in the next experiment.

Experiment #7

;**

;* Experiment #7: cursor & frequency

;

;* Keypad code „#‟ = move cursor right

;* Keypad code '*' = flash LED with value

;* of current LCD digit

;***

;Keypad & ScanRow routines omitted for brevity. See Experiment #6 for code.

PadCommand:

 cpi temp1,11 ;special case: is it “0”?

 brne kp2 ;no, continue

 ldi temp1,0 ;yes, replace with real zero

kp2: cpi temp1,12 ;special case: "#" command?

 brne kp3 ;no, try next command

 inc press ;emulate button press = cursor right

 ldi temp1,1 ;1 blink for switch debouncing

 rjmp kp5 ;done with “#”

kp3: cpi temp1,10 ;special case:"*" command

 brne kp5 ;no, must be a keypad digit

 mov temp2,StepRate ;yes, get current cursor position

 ldi ZH,high(rcve0) ;point to frequency value in memory

 ldi ZL,low(rcve0) ;16 bits, so need two instructions

kp4: dec ZL ;advance through frequency digits

 dec temp2 ;and advance through cursor positions

 brpl kp4 ;until we get to current digit

 ld temp1,Z ;load value at cursor

kp5: tst temp1 ;get a zero result?

 breq kp6 ;no flashes for zero

 rcall Blink_LED ;still doin‟ lots of flashin‟

kp6: ret

15 Add a keypad - W8BH

I chickened out. I like to do things in small steps, and I wasn‟t ready to tackle the whole

frequency/numbers thing yet. Maybe by now you are braver than me. I am just showing you

my steps, without any substantial editing of the process.

If you are an encoder, you just count up (or down) by one. But a keypad digit can be a jump of

0 to 9 from the value of the current digit. First we must know the value at the current cursor

position. The code above will LED flash the value of the LCD digit at the cursor position. Turn

the encoder knob to something like 15,000,000 and then press „*‟. You should get 5 LED blinks.

The code that determines the digit at the current cursor position is between labels kp3 and kp5.

It is a bit complicated, and requires you to know the variable that stores the current cursor

position (StepRate) and the variable that points to the displayed frequency (rcve0). You can

find similar logic in the source code where the frequencies are incremented and decremented.

Now that we have the current digit, can we emulate encoder rotation that will get us to the

keypad‟s digit? For example, if the current display is 700 Hz and I press a „9‟ on the keypad,

how do I get to 900 Hz? It would take an encoder movement of +2. The answer is just the

difference of the requested digit (keypad) and the current digit. First, remove the „*‟ command by

changing „brne kp5‟ to „breq kp6‟. Substitute the following code, and your LED will flash the

difference between the current digit on the LCD and what you pressed.

;above this level, change brne kp5 to breq kp6

kp4: dec ZL ;advance through frequency digits

 dec temp2 ;and advance through cursor positions

 brpl kp4 ;until we get to current digit

 ld temp3,Z ;load value at cursor

 sub temp1,temp3 ;subtract from keypad digit

 brpl kp5 ;convert to absolute value

 neg temp1 ;was negative result, so negate it.

kp5:

Wow, now we are flashing the value we want to encoder to move. But what is the name of the

register in the source code that handles encoder requests? Not surprisingly, is called „encoder‟.

Now, try this amazingly simple change:

kp4: dec ZL ;advance through frequency digits

 dec temp2 ;and advance through cursor positions

 brpl kp4 ;until we get to current digit

 ld temp3,Z ;load value at cursor

 sub temp1,temp3 ;subtract from keypad digit

 mov encoder,temp1 ;set up difference for encoder routines.

 ret ;done! Keep kp5 & kp6 below for now.

Press a digit, and the DDS frequency changes! We are nearly done. In the next and final part,

I will add a few things to make our keypad easier to use.

16 Add a keypad – W8BH

Full Code:

;**

;* W8BH - KEYPAD INSERTION SEQUENCE

;*

;* Adds a 3x4 keypad interface to the

;* DDS Development kit by W8DIZ

;*

;* KEYPAD CONNECTIONS (7 wires)--

;* Row1 to PB5, Row2 to BP4,

;* Row3 to PB3, Row4 to PB2,

;* Col0 to PD7, Col1 to PB1, Col2 to PB0

;*

;* Functions

;* # = cursor right

;* * not implemented, consider cursor left.

;*

;***

KEYPAD:

 cbi PORTD,PD7 ;take column1 low

 ldi temp1,2 ;col1 value is 2

 rcall ScanRows ;see if a row went low

 sbi PORTD,PD7 ;restore column1 high

 cbi PORTB,PB0 ;take column2 low

 ldi temp1,1 ;col2 value is 1

 rcall ScanRows ;see if a row went low

 sbi PORTB,PB0 ;restore col2 high

 cbi PORTB,PB1 ;take column3 low

 ldi temp1,0 ;col3 value is 0

 rcall ScanRows ;see if a row went low

 sbi PORTB,PB1 ;restore column3 high

 ret

SCANROWS:

 clc ;clear carry

 sbis pinB,PB5 ;is row1 low?

 subi temp1,3 ;yes, subtract 3

 sbis pinB,PB4 ;is row2 low?

 subi temp1,6 ;yes, subtract 6

 sbis pinB,PB3 ;is row3 low?

 subi temp1,9 ;yes, subtract 9

 sbis pinB,PB2 ;is row4 low?

 subi temp1,12 ;yes, subtract 12

 brcc kp1 ;no carry = no keypress

 neg temp1 ;negate answer

 rcall PadCommand ;do something

kp1: ret

17 Add a keypad - W8BH

PADCOMMAND:

 cpi temp1,11 ;special case: is it “0”?

 brne kp2 ;no, continue

 ldi temp1,0 ;yes, replace with real zero

kp2: cpi temp1,12 ;special case: "#" command?

 brne kp3 ;no, try next command

 inc press ;emulate button press = cursor right

 rjmp kp5 ;done with “#”

kp3: cpi temp1,10 ;special case:"*" command

 breq kp5 ;yes, ignore it for now.

mov temp2,StepRate ;no, get current cursor position

 ldi ZH,high(rcve0) ;point to frequency value in memory

 ldi ZL,low(rcve0) ;16 bits, so need two instructions

kp4: dec ZL ;advance through frequency digits

 dec temp2 ;and advance through cursor positions

 brpl kp4 ;until we get to current digit

 ld temp3,Z ;load value at cursor

 sub temp1,temp3 ;subtract from keypad digit

 mov encoder,temp1 ;set up difference for encoder routines.

 inc press ;advance cursor position

kp5: ldi delay,150 ;simple key debouncer

 rcall wait ;give the LED a rest!

 ret

Now the cursor advances after each entered digit. Unfortunately, it advances too quickly! A few
more changes are needed to improve reliability. Since updating each digit takes time, we must
suspend keypad scanning until all pending encoder requests are met. A few inserted lines in
the main menu will do the trick:

menu9:

 tst encoder ;!!any pending encoder requests?

 brne menu ;!!if so, ignore keypad

 rcall keypad ;!!check keypad

 rjmp menu

- and -

menu5:

 tst press

 breq menu9

 tst encoder ;!!check for pending encoder requests

 brne menu9 ;!!dont advance cursor until encoder done

 dec press

18 Add a keypad – W8BH

Final Thoughts

I hope you had some fun learning how to add a keypad to your DDS. You probably have

thought of some improvements or new things to try. For example, I might turn the „*‟ into a

cursor-left key. If you have a 4x4 keypad, you can add another column line to your code and

have additional function keys to play with.

It takes some time for the DDS to „catch up‟ when you enter a digit on the keypad. I‟d like to be

able to enter the numbers faster. For starters, you can try shortening some of the key-

debounce wait times. Or you can abandon the idea of emulating the encoder, and write your

own direct keypad-to-DDS interface. Have fun!

