

How to program the AD9834
in your DDS Development Kit

By Bruce Hall, W8BH

At the heart of your DDS development kit is the Analog Devices chip AD9834. That tiny,

surface-mount piece of plastic handles all of the frequency synthesis on board. Did you know

that your DDS kit has been programmed to output a signal of 12.5 MHz when it‟s first turned

on? If you‟d like to learn more, read on.

The AD9834 is a 75 MHz device, overclocked to 100 MHz. It divides its master clock by a 28 bit

number, yielding an incredible 100 MHz/2^28 = 0.37 Hz resolution. Internally there are two

frequency and two phase registers, which can be set and selected by software. The output

frequency is determined by the value of the active frequency register, according to the formula:

Freq (MHz) = Register * 100/2^28.

Most of the time, however, we want to know the register value for a certain frequency. This

equation would be:

 Register = (Freq/100)*2^28

 = 2684354.56 * Freq (in MHz)

For example, the register value for 7.040 MHz would be (7.040/100)*2^28 = 18897856 decimal

or $01205BC0 hexadecimal. It would be great if we could just program this number into our

microcontroller and then send it to the AD9834. Unfortunately it‟s not quite that easy! For

starters, $01205BC0 is a really big number for an 8-bit controller. Our ATmega88 can only

handle numbers up to 256, which is one byte (or 2 hex digits) in size. The number we want is 4

bytes long, so we‟ll need to send it in four byte-sized chunks:

 Send this: $01 (The first byte is called the MSB, „most-significant byte‟)

 Then this: $20

 Then this: $5B

 Then this: $C0 (The last byte is called the LSB, „least-significant byte‟)

There is another wrinkle, too: the AD9834, for some obscure reason, wants us to embed some

2 Programming the AD9834

bits to tell it which register it should load. That right: we have to chop up this huge number, and

stuff it with a couple „01‟s if we want frequency register0 or a couple „10‟s if we want frequency

register1. If you get squeamish at the sight of binary 0‟s and 1‟s, you can skip the next few

paragraphs. Suffice it to say that it takes humans a while to figure out what bits to send to our

AD9834. It is much easier for our AVR microcontroller.

To set a frequency register in the AD9834, we have to send it a total of 32 bits (8 bytes). These

32 bits will include the 28-bit value that we want in the register, plus 4 bits for the register

address. The bits must be sent in the following order:

 2 bits for register address

 14 upper bits for the register value

 2 bits for the register address (again)

 14 lower bits for the register value

We send the register address twice because the AD9834 accepts data in 16-bit chunks. Every

time we send it data, the first two bits identify what the data is for:

00 command follows
01 frequency register0 data follows

 10 frequency register1 data follows

 11 phase register data follows

Getting back to our 7.040 MHz example, what number do we need to enter? Here is the

plan: write out the number in binary, cut it into 14 bit sections, put in „01‟ for register0 in the

appropriate spots, and then send it to the DDS chip in byte-sized chunks.

Step1: write out the number ($01205BC0) in binary. I like to put dots between every four bits,

which divide it into hex-digits. You may like to use a space, or something else.

 $1205BC0 = 0001.0010.0000.0101.1011.1100.0000 (28 bits)

- - - - 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0 0 0 0 0

Step2: divide it into two 14-bit chunks

 upper chunk: 00010010000001 (14 bits)

 lower chunk: 01101111000000 (14 bits)

- - - - 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0 0 0 0 0

Step3: add „01‟ to start of each chunk, so that the DDS knows it‟s for register0

3 Programming the AD9834

 upper chunk: 0100010010000001 (16 bits)

 lower chunk: 0101101111000000 (16 bits)

0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 1 1 0 0 0 0 0 0

Step 4: group the 32 bits into four byte-sized values that the micro can handle:

0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 1 1 0 0 0 0 0 0

 4 4 8 1 5 B C 0

Final result = $4481.5BC0. Send four bytes: $44, $81, $5B, $C0

That‟s it for the binary stuff. If we send the four bytes $44, $81, $5B, and $C0 to the DDS, we

will get 7.040 MHz out the other end. Diz has given us a routine to send stuff to the DDS,

called Shift_16. (Respectfully ignore the comments in the Shift_16 code, since they are

obviously a typo meant for something else).

Finding the 12.5 MHz output

Let‟s try some experiments. Hook up a frequency counter to your output, and enable output

with a jumper from Vcc to T+ or R+. Here is a picture of my setup. If you don‟t have a

frequency counter handy, terminate the output with a 50 ohm resistor, extend a wire from the

output towards your receiver and tune to the indicated frequency. Make sure that you are able

to see RF output at 10 MHz, or whatever other frequency is indicated by your LCD.

Notice that I don‟t

even have my LCD

connected! It doesn‟t

do anything in the

following experiments

– in fact, we halt the

microcontroller before

the LCD is initialized.

Looking at a non-

functioning LCD was

bothering me, so I

removed it.

4 Programming the AD9834

Now find a group of lines, near the beginning of the program, that call SHIFT_16 several times.

The last group of 3 is listed here. Add a single instruction below it, like this:

 ldi temp1,$20 ;enable output

 ldi temp2,$00

 rcall SHIFT_16 ;output to DDS chip

;**

; W8BH - START OF INSERTED CODE

;**

halt: rjmp halt ;hard stop.

The „halt‟ line forms an infinite loop. The microcontroller cannot advance beyond this point.

When you run this code, your output should read 12.5 MHz. The lines above the hard stop

send data to the AD9834 that specify this peculiar frequency. Why 12.5 MHz?? I dunno.

Experiment #1

It‟s time to send our own data. From all the binary discussion above, we know the number for

an output of 7.040 MHz. Here is the code:

 rcall exp01 ;call our experiment first, then halt

halt: rjmp halt ;hard stop.

Exp01:

; sends the value $4481.5BC0 to the DDS chip

; the corresponding DDS output frequency is 7.040 MHz

 ldi temp1,$5B

 ldi temp2,$C0

 rcall SHIFT_16

 ldi temp1,$44

 ldi temp2,$81

 rcall SHIFT_16

 ret

Run it, and your frequency counter should jump to 7.040 MHz. That‟s nice, but it is really easy to

get the bytes mixed up. I‟d like to see the bytes in proper order. Here is a more user-friendly

routine that takes the four input bytes from temp1 through temp4.

Experiment #2

 rcall exp02 ;call our experiment first, then halt

halt: rjmp halt ;hard stop.

Exp02:

; sends the value $4481.5BC0 to the DDS chip

; the corresponding DDS output frequency is 7.040 MHz

5 Programming the AD9834

; same result as Exp01, except easier to read

 ldi temp1,$44

 ldi temp2,$81

 ldi temp3,$5B

 ldi temp4,$60

 rcall DDSSendData

 ret

DDSSendData:

; sends a 4-byte value to the DDS chip,

; uses temp1 (MSB) to temp4 (LSB)

; note: this is a 32-bit value (28bit freq + 4bit register select)

 push temp1 ;save MSW for now

 push temp2

 mov temp1,temp3

 mov temp2,temp4

 rcall SHIFT_16 ;send LSW first

 pop temp2

 pop temp1

 rcall SHIFT_16 ;send MSW now

 ret

It does the exact same thing, but easier to use. If you get tired of looking at the 7.040 MHz

output, try some other values. I‟ve put an appendix at the end with a table of frequencies and

their „numbers‟. For example, for 10 MHz use the numbers $46, $66, $59, and $99.

It is quite tedious doing all of the bit manipulations in Steps 1-4 above. I found myself making

lots of mistakes when trying to cut and splice those 1‟s and 0‟s. Instead, we can write code to

do the bit-stuffing. In our case we need to put 2 bits in front of and 2-bits in the middle of our

28-bit value. Let‟s do that by shifting the whole thing 2 bits to the left, and then shifting the lower

2 bytes to the right. Got that? Me neither! Here is a diagram of the steps, just like before:

Unused 14 bits in upper chunk 14 bits in lower chunk

0 0 0 0

After shifting everything 2 bits to the left, it will look like this:

0 0 0 0

Now shift the lower 16 bits back to the right, and it will look like this:

0 0 0 0

6 Programming the AD9834

Now we have space for our register selection bits. To send the value to register0, our main

register, we just have to put „01‟ at both „00‟ locations.

0 1 0 1

An easy way to set these two bits is with the ORI (OR-immediate) instruction. An alternative

method would be to use the SBR (set bit in register) instruction. Now the 32 bits are ready, and

can be send them to the DDS. Here is the code:

Experiment #3

rcall exp03 ;call our experiment first, then halt

halt: rjmp halt ;hard stop.

Exp03:

; sends the 28-bit value $0120.5BC0 to DDS Freq Register0

; the corresponding DDS output frequency is 7.040 MHz

 ldi temp1,$01

 ldi temp2,$20

 ldi temp3,$5B

 ldi temp4,$C0

 rcall DDSSetFreq28

 ret

DDSSetFreq28:

; sends the 28-bit magic number to Freq Register0

 lsl temp4 ;shift 1 bit left

 rol temp3

 rol temp2

 rol temp1

 lsl temp4 ;shift 1 bit left again

 rol temp3

 rol temp2

 rol temp1

 lsr temp3 ;undo shifts in LSW

 ror temp4

 lsr temp3

 ror temp4

 ori temp3,$40 ;add reg0 select bits to byte3

 ori temp1,$40 ;add reg0 select bits to byte1

 rcall DDSSendData ;send Reg0 output# to DDS chip

 ret

Did you notice how we use 1 shift and 3 rotate instructions to shift everything one bit to the left?

The first instruction, LSL (logical shift left), works on the least significant byte (temp4). The

„rightmost‟ bit, bit0, gets a 0. Bit1 gets whatever bit0 was, bit2 gets whatever bit1 was, etc.

What happens to the leftmost bit, Bit7? It gets bumped off to a carry bit.

LSL: C ← ← 0

7 Programming the AD9834

The carry bit is important, because bit7 needs to be shifted into the byte above it. The

instruction that does that job is ROL (rotate left). It does the same thing as LSL, except that

instead of putting a zero into bit0, it puts the carry bit.

ROL: new carry old carry

C ← ← C

We can extend this one-bit shift over as many bytes as we want, adding a ROL for each more-

significant byte. The two ORI instructions at the end specify that the data goes to frequency

register 0. If we want to send that data to the second frequency register instead, we‟d ORI with

$80 instead of $40.

With DDSSetFreq28, calculate the number we need from the formula on page one, load it into

temp1-temp4, and the desired frequency is output. The appendix lists some example numbers

for the QRP calling frequencies.

Great, now it‟s time for another wrinkle. Diz does NOT use these 28-bit numbers to calculate

frequency! And for a good reason, too. Although the number is fairly precise, it still has an

inherent inaccuracy of up to 0.37 Hz. As we turn the encoder, those inaccuracies accumulate.

For example, suppose that the 1 KHz number has an rounding error of +0.2 Hz. As we turn at 1

KHz increments from 7.040 to 7.080, we add 40 * 0.2 Hz = 8 Hz to our operating frequency.

The more we turn the encoder, the larger the error gets.

We can minimize the rounding error if we start with more precise numbers. Diz uses larger

(x32) numbers that give us 5 more bits of precision. So instead of an accuracy of 0.37

(1E8/2^28) Hz, we now get an accuracy of 0.01 Hz (1E8/2^33). You can turn the encoder knob

all day and not build up any significant error. The key is to do all computations at the higher

precision, and fill the frequency register with the result/32. It is super-simple to divide by 32:

just shift your result 5 bits to the right. In binary, shifting right divides by 2 and shifting left

multiplies by two. Five left shifts = /32.

Let‟s make a new routine, using Diz‟ 32-bit “super” numbers instead of the regular 28-bit

numbers. All we have to do is shift our supernumber 5 bits to the right (divide-by-32) and then

use our old routine. Maybe something like this:

DDSSetFreq32idea:

; sends the 32-bit magic number to Freq Register0

; divides the number by 32 (5 shifts right), then calls DDSSetFreq28

 ldi temp5,3 ;do 3 bit-shifts to the right

dd1: lsr temp1 ;shift LSB

 ror temp2

 ror temp3

 ror temp4 ;shift MSB

 dec temp5 ;all done?

 brne dd1 ;no, do another bit-shift

8 Programming the AD9834

 rcall DDSSetFreq28

 ret

It works, but can be better. Look at the 28-bit routine again. The first thing it does is shift

everything 2 bits to the left. Why bother going right 5 bits and then immediately back (left)

2bits? It is simpler and faster to go right by 3 bits:

DDSSetFreq32:

; sends the 32-bit "super" magic number to Freq Register0

 ldi temp5,3 ;do 3 bit-shifts to the right

dd0: lsr temp1 ;shift LSB

 ror temp2

 ror temp3

 ror temp4 ;shift MSB

 dec temp5 ;all done?

 brne dd0 ;no, do another bit-shift

 lsr temp3 ;create 2-bit space in LSW

 ror temp4

 lsr temp3

 ror temp4

 ori temp3,$40 ;add reg0 select bits to byte3

 ori temp1,$40 ;add reg0 select bits to byte1

 rcall DDSSendData ;send Reg0 output# to DDS chip

 ret

Compare our new routine to Diz‟ FREQ_OUT routine. They accomplish the exact same

function, and are written very similarly. Check it out with the last experiment. The code below

can use the same frequency numbers used by the main program, which are stored in the 4-byte

variable rcve0.

Experiment #4

 rcall exp04 ;call our experiment first, then halt

halt: rjmp halt ;hard stop.

Exp04:

; sends the 32-bit value $240B.7803 to DDS Freq Register0

; the corresponding DDS output frequency is 7.030 MHz

 ldi temp1,$24

 ldi temp2,$0B

 ldi temp3,$78

 ldi temp4,$03

 rcall DDSSetFreq32

 ret

That‟s it: you now know how to program the DDS chip. One thing I didn‟t cover is using the

second frequency register. I have put a few routines into the source code that let you select

output from either register. Having a second frequency is quite handy for things like dual

VFO‟s/split operation, RIT/XIT, FSK, RTTY, etc.

 If you try any of the above experiments with your DDS kit, don‟t forget to remove the code

(especially the hard stop) when you‟re done. Your DDS kit won‟t work until you remove the hard

stop.

9 Programming the AD9834

Appendix

In my examples I used numbers for 40 meters. Here are some more numbers you can try.

DDS Output Experiment #2 Experiment #3 Experiment #4

Frequency (MHz) Direct Entry for Reg 0 28-bit Magic Number 32-bit Magic Number

3.560 4247514E 0091D14E 123A29C7

7.030 447F72E4 011FF2E4 23FE5C91

7.040 44815BC0 01205BC0 240B7803

10.000 46665999 01999999 33333333

10.106 46777117 019DF117 33BE22E5

14.060 48FF65C9 023FE5C9 47FCB923

18.096 4B947650 02E53650 5CA6CA03

21.060 4D7A5E1B 035E9E1B 6BD3C361

24.906 4FF06656 03FC2656 7F84CAD5

28.060 51F5566C 047D566C 8FAACD9E

10 Programming the AD9834

Source Code

Find the following lines in the original source code, near the beginning of the program. Insert new code

as indicated.

 ldi temp1,$21 ;reset AD9834 and init all registers

 ldi temp2,$00

 rcall SHIFT_16 ;output to DDS chip

 ldi temp1,$7F ;freq0 ls 14 bits

 ldi temp2,$29

 rcall SHIFT_16 ;output to DDS chip

 ldi temp1,$47 ;freq0 ms 14 bits

 ldi temp2,$FF

 rcall SHIFT_16 ;output to DDS chip

 ldi temp1,$80 ;freq1 ls 14 bits

 ldi temp2,$00

 rcall SHIFT_16 ;output to DDS chip

 ldi temp1,$80 ;freq1 ms 14 bits

 ldi temp2,$80

 rcall SHIFT_16 ;output to DDS chip

 ldi temp1,$C0 ;clear phase0

 ldi temp2,$00

 rcall SHIFT_16 ;output to DDS chip

 ldi temp1,$E0 ;clear phase1

 ldi temp2,$00

 rcall SHIFT_16 ;output to DDS chip

 ldi temp1,$20 ;enable output

 ldi temp2,$00

 rcall SHIFT_16 ;output to DDS chip

;**

; W8BH - START OF INSERTED CODE

;**

 rcall exp01 ;change this to exp02, exp03, or exp04

halt: rjmp halt ;hard stop.

Exp01:

; sends the value $4481.5BC0 to the DDS chip

; the corresponding DDS output frequency is 7.040 MHz

 ldi temp1,$5B

 ldi temp2,$C0

 rcall SHIFT_16

 ldi temp1,$44

 ldi temp2,$81

 rcall SHIFT_16

 ret

Exp02:

; sends the value $4481.5BC0 to the DDS chip

; the corresponding DDS output frequency is 7.040 MHz

11 Programming the AD9834

; same result as Exp01, except easier to read

 ldi temp1,$44

 ldi temp2,$81

 ldi temp3,$5B

 ldi temp4,$60

 rcall DDSSendData

 ret

DDSSendData:

; sends a 4-byte value to the DDS chip,

; uses temp1 (MSB) to temp4 (LSB)

; note: this is a 32-bit value (28bit freq + 4bit register select)

 push temp1 ;save MSW for now

 push temp2

 mov temp1,temp3

 mov temp2,temp4

 rcall SHIFT_16 ;send LSW first

 pop temp2

 pop temp1

 rcall SHIFT_16 ;send MSW now

 ret

Exp03:

; sends the 28-bit value $0120.5BC0 to DDS Freq Register0

; the corresponding DDS output frequency is 7.040 MHz

 ldi temp1,$01

 ldi temp2,$20

 ldi temp3,$5B

 ldi temp4,$C0

 rcall DDSSetFreq28

 ret

DDSSetFreq28:

; sends the 28-bit magic number to Freq Register0

 lsl temp4 ;shift 1 bit left

 rol temp3

 rol temp2

 rol temp1

 lsl temp4 ;shift 1 bit left again

 rol temp3

 rol temp2

 rol temp1

 lsr temp3 ;undo shifts in LSW

 ror temp4

 lsr temp3

 ror temp4

 ori temp3,$40 ;add reg0 select bits to byte3

 ori temp1,$40 ;add reg0 select bits to byte1

 rcall DDSSendData ;send Reg0 output# to DDS chip

 ret

Exp04:

; sends the 32-bit value $240B.7803 to DDS Freq Register0

; the corresponding DDS output frequency is 7.030 MHz

 ldi temp1,$24

 ldi temp2,$0B

 ldi temp3,$78

 ldi temp4,$03

 rcall DDSSetFreq32

 ret

DDSSetFreq32:

; sends the 32-bit "super" magic number to Freq Register0

12 Programming the AD9834

 ldi temp5,3 ;do 3 bit-shifts to the right

dd0: lsr temp1 ;shift LSB

 ror temp2

 ror temp3

 ror temp4 ;shift MSB

 dec temp5 ;all done?

 brne dd0 ;no, do another bit-shift

 lsr temp3 ;create 2-bit space in LSW

 ror temp4

 lsr temp3

 ror temp4

 ori temp3,$40 ;add reg0 select bits to byte3

 ori temp1,$40 ;add reg0 select bits to byte1

 rcall DDSSendData ;send Reg0 output# to DDS chip

 ret

DDSOutputA:

; set output according to frequency register 0

 ldi temp1,$20 ;enable output A

 ldi temp2,$00

 rcall SHIFT_16 ;output to DDS chip

 ret

DDSOutputB:

; set output according to frequency register 1

 ldi temp1,$28 ;enable output B

 ldi temp2,$00

 rcall SHIFT_16 ;output to DDS chip

 ret

DDSReset:

; initializes the AD9834 DDS chip, clears all registers

; note: output is disabled until reset bit is cleared.

 ldi temp1,$21 ;reset command

 ldi temp2,$00

 rcall SHIFT_16 ;output to DDS chip

 ret

;**

; W8BH - END OF INSERTED CODE

;**

 rcall DEFAULT_FREQ ;move default freq to buffers

 rcall FREQ_OUT ;output freq bits to DDS chip

; FURTHER DOWN IN THE SOURCE CODE ARE THESE ORIGINAL ROUTINES…

FREQ_OUT:

 ldi temp1,$20 ;28 bits FREQ0 to AD9834

 ldi temp2,$00

 rcall SHIFT_16 ;output to DDS chip

 ldi yl,low(rcve0)

 rcall AdjFreq ;!!W8BH - Added for IF adjustment

 ld temp4,y+ ;LSB

 ld temp3,y+ ;

 ld temp2,y+ ;

 ld temp1,y+ ;MSB

13 Programming the AD9834

 lsr temp1 ;MSB-high

 ror temp2 ;MSB-low

 ror temp3 ;LSB-high

 ror temp4 ;LSB-low

 lsr temp1 ;MSB-high

 ror temp2 ;MSB-low

 ror temp3 ;LSB-high

 ror temp4 ;LSB-low

 lsr temp1 ;MSB-high

 ror temp2 ;MSB-low

 ror temp3 ;LSB-high

 ror temp4 ;LSB-low

 lsr temp3

 ror temp4

 lsr temp3

 ror temp4

 push temp1

 push temp2

 mov temp1,temp3

 mov temp2,temp4

 ori temp1,0b01000000

 rcall SHIFT_16 ;send 14 bits

 pop temp2

 pop temp1

 push temp1

 push temp2

 ori temp1,0b01000000

 rcall SHIFT_16 ;send 14 bits

 mov temp1,temp3

 mov temp2,temp4

 ori temp1,0b10000000

 rcall SHIFT_16 ;send 14 bits

 pop temp2

 pop temp1

 ori temp1,0b10000000

 rcall SHIFT_16 ;send 14 bits

 ret

;**********************************

;* SHIFT_16

;* display HEX bytes

;* at active LCD position

;* byte count in temp2

;***********************************

SHIFT_16:

;16 bit serial out msb first in temp1, then lsb in temp2

 push temp3

 cbi PORTD,DDSenable ;FSYNC goes LOW

 ldi temp3,16 ;16 bits bit counter

shift8:

 sbi PORTD,DDSdata ;set port bit

 rol temp1 ;shift dds address byte

 brcs clockit ;check for 1/0

14 Programming the AD9834

 cbi PORTD,DDSdata ;clear port bit

clockit:

 nop

 cbi PORTD,DDSclock ;clock dds

 nop

 sbi PORTD,DDSclock

 dec temp3 ;decrement bit counter

 breq sox ;exit if done

 cpi temp3,8 ;check byte counter

 brne shift8 ;output more bits

 mov temp1,temp2 ;get lsb

 rjmp shift8 ;write data bits

sox:

 sbi PORTD,DDSenable ;FSYNC goes HIGH

 pop temp3

 ret

