

Morse Code Tutor -

from the ground up

Part 6: The Menu System

Bruce E. Hall, W8BH

This is part 6 of a series about an inexpensive device that helps you learn Morse Code. It is inspired by

Jack Purdum’s “Morse Code Tutor”, using a Blue Pill microcontroller board and the Arduino IDE.

Our project has come a long way, and can send Morse several different ways. It is time to present

those choices using a menu system, and allow the user to select a choice using the rotary encoder.

Menu system basics.

I have a small confession: programming a menu system, the stuff of full-blown operating systems,

sounds a bit overwhelming and out of my league. I put it off as long as I could. But Jack did it, and that

gave me enough confidence to try it myself. To my amazement, it wasn’t hard at all! By making a few

assumptions we can accomplish it with only a handful of routines.

The first assumption is that there is only one menu on the screen, and that it can use the entire screen if

necessary. The second assumption is that the menu fonts and colors are fixed. The menu contents are

fixed and stored in arrays of strings. The overall menu structure will be a horizontal menu on the top

that is always visible, and vertical drop-down submenus that are only visible when in use.

With these assumptions we define multiple constants:

// ================================== Menu Constants ===================================

#define DISPLAYWIDTH 320 // Number of LCD pixels in long-axis

#define DISPLAYHEIGHT 240 // Number of LCD pixels in short-axis

#define TOPDEADSPACE 30 // All submenus appear below top line

#define MENUSPACING 100 // Width in pixels for each menu column

#define ROWSPACING 25 // Height in pixels for each text row

#define COLSPACING 12 // Width of each text character

#define MAXCOL DISPLAYWIDTH/COLSPACING // Number of characters per row

#define MAXROW (DISPLAYHEIGHT-TOPDEADSPACE)/ROWSPACING // Number of text rows on screen

#define FG GREEN // Menu foreground color

#define BG BLACK // Menu background color

#define SELECTFG BLUE // Selected Menu foreground color

#define SELECTBG WHITE // Selected Menu background color

#define TEXTCOLOR YELLOW // Default non-menu text color

Some of these constants are not new – we used them in Part 3 when we added the display. Others

require a bit of explanation. Since we want to keep the main menu visible at all times, we will make the

top of the screen a “keep out” area for text characters. This is defined by TOPDEADSPACE. Notice how

http://w8bh.net/

the number of available text rows is decreased by this new keep-out area. The bottom five constants all

deal with color: the colors of unselected menus, selected menus, and the character text.

The first thing to consider is how to display a single menu entry on the screen, remembering that it

could be in selected or unselected color. Let’s write a small helper function for it:

void showMenuItem(char *item, int x, int y, int fgColor, int bgColor)

{

 tft.setCursor(x,y);

 tft.setTextColor(fgColor, bgColor);

 tft.print(item);

}

The main menu.

Displaying the top menu is just a matter of placing the contents of the menu, stored in menu[], on the

top line of the display. Notice that (i * MENUSPACING) is used as the x coordinate and the y coordinate

is 0:

 for (int i = 0; i < itemCount; i++) // for each item in menu

 showMenuItem(menu[i],i*MENUSPACING,0,FG,BG); // display it

All of the menus are first shown in the nonselected colors (FG/BG). Now, highlight the indexed

(selected) menu by displaying it with the ‘select’ colors:

 showMenuItem(menu[index],index*MENUSPACING,0,SELECTFG,SELECTBG);

Use the encoder to choose which menu is selected. Three (3) things need to happen: deselecting the

previous choice, updating the selection index, and selecting the new choice:

 showMenuItem(menu[index],index*MENUSPACING,

 0, FG,BG); // deselect current item

 index += dir; // go to next/prev item

 if (index > itemCount-1) index=0; // dont go beyond last item

 if (index < 0) index = itemCount-1; // dont go before first item

 showMenuItem(menu[index],index*MENUSPACING,

 0, SELECTFG,SELECTBG); // select new item

Finally, if the user pressed the button, return the users selection:

 while (!button_pressed) // loop for user input:

 {

 int dir = readEncoder(); // check encoder

 if (dir) { // did it move?

 showMenuItem(menu[index],index*MENUSPACING,

 0, FG,BG); // deselect current item

 index += dir; // go to next/prev item

 if (index > itemCount-1) index=0; // dont go beyond last item

 if (index < 0) index = itemCount-1; // dont go before first item

 showMenuItem(menu[index],index*MENUSPACING,

 0, SELECTFG,SELECTBG); // select new item

 }

 }

 return index;

The dropdown menus.

The routine for the dropdown submenus is almost identical. The only change required is to position the

entries vertically instead of horizontally. Here is the entire routine, highlighting the small changes:

int subMenu(char *menu[], int itemCount) // Display drop-down menu & return sel.

{

 int index=0, x,y;

 button_pressed = false; // reset button flag

 x = menuCol * MENUSPACING; // x-coordinate of this menu

 for (int i = 0; i < itemCount; i++) // for all items in the menu...

 {

 y = TOPDEADSPACE + i*ROWSPACING; // calculate y coordinate

 showMenuItem(menu[i],x,y,FG,BG); // and show the item.

 }

 showMenuItem(menu[index],x,TOPDEADSPACE, // highlight first item

 SELECTFG,SELECTBG);

 while (!button_pressed) // exit on button press

 {

 int dir = readEncoder(); // check for encoder movement

 if (dir) // it moved!

 {

 y = TOPDEADSPACE + index*ROWSPACING; // calc y-coord of current item

 showMenuItem(menu[index],x,y,FG,BG); // deselect current item

 index += dir; // go to next/prev item

 if (index > itemCount-1) index=0; // dont go past last item

 if (index < 0) index = itemCount-1; // dont go before first item

 y = TOPDEADSPACE + index*ROWSPACING; // calc y-coord of new item

 showMenuItem(menu[index],x,y,

 SELECTFG,SELECTBG); // select new item

 }

 }

 return index;

}

With both routines in place, getting the user selection is just a matter of getting the main menu

selection, then getting the vertical submenu selection. For convenience, I combine the two results into

a single number, where the tens-digit is equal to the main menu selection and the ones-digit is the

submenu selection.

int getMenuSelection() // Display menu system & get user

selection

{

 int item;

 eraseMenus(); // start with fresh screen

 menuCol = topMenu(mainMenu,ELEMENTS(mainMenu)); // show horiz menu & get user choice

 switch (menuCol) // now show menu that user selected:

 {

 case 0:

 item = subMenu(menu0,ELEMENTS(menu0)); // "receive" dropdown menu

 break;

 case 1:

 item = subMenu(menu1,ELEMENTS(menu1)); // "send" dropdown menu

 break;

 case 2:

 item = subMenu(menu2,ELEMENTS(menu2)); // "config" dropdown menu

 }

 return (menuCol*10 + item); // return user's selection

}

For example, if the user chooses the fourth item (item=3) from the config menu (menuCol=2), the

returned result is (2*10)+3 = selection #23.

Putting it all together.

The menu system requires arrays of strings for each menu. Here are some menus:

//=================================== Menu Variables ===================================

int menuCol=0, textRow=0, textCol=0;

char *mainMenu[] = {" Receive ", " Send ", " Config "};

char *menu0[] = {" Letters ", " Numbers ", " Punc ", " Words ", " Let-Num ",

 "Call Sign", " QSO ", " Exit "};

char *menu1[] = {" Practice", " CopyCat ", "Flashcard", " Exit "};

char *menu2[] = {" Speed ", "CharSpeed", " Chk Spd ", " Tone ", " Dit Pad ",

 " Defaults", " Exit "};

Now, in the main program loop(), get the menu selection from the user and call the corresponding

routine. Any selection that has not been programmed will just be ignored.

void loop()

{

 int selection = getMenuSelection(); // get menu selection from user

 eraseMenus(); textRow=0; textCol=0; // clear screen below menu

 button_pressed = false; // reset flag for new presses

 randomSeed(millis()); // randomize!

 switch(selection) // do action requested by user

 {

 case 00: sendLetters(); break;

 case 01: sendNumbers(); break;

 case 03: sendCommonWords(); break;

 case 04: sendMixedChars(); break;

 case 05: sendCallsigns(); break;

 default: ;

 }

Part 6 Summary.

Pretty neat, huh? We have a fully functioning device. We display a menu, let the user to choose the

Morse practice they want, then run the code associated with that choice. Furthermore, we have the

tools needed to create our own menus and create new types of practice. The rest is, as they say, just a

“simple matter of programming”. Part 7 will flesh out some of the remaining bits and pieces, including

how to save user preferences.

Source code is available on my github account.

73, Bruce.

http://w8bh.net/MorseTutor7.pdf
https://github.com/bhall66

