

Morse Code Tutor -

from the ground up

Part 2: Simple Morse

Bruce E. Hall, W8BH

This is part 2 of a series about a $20 device that helps you learn Morse Code. It is inspired by Jack

Purdum’s “Morse Code Tutor”, using a Blue Pill microcontroller board and the Arduino IDE.

Now that we have the Blue Pill working within the Arduino IDE and have successfully loaded the Blink

sketch, it is time to do something more interesting. The monotonous blinking LED gets boring after a

while. Let’s make it do something more “ham-like”. Let’s make it do Morse!

Dits and Dahs.

It doesn’t get much simpler than a dit in morse code. Let’s create a routine to make the LED do a dit.

We will define a constant DITPERIOD to equal the length of one dit, in milliseconds. Here is the code to

send the character “S”:

#define DITPERIOD 120 // period of dit, in milliseconds

#define LED PC13

void dit() {

 digitalWrite(LED,0); // turn on LED

 delay(DITPERIOD); // wait 1 dit period

 digitalWrite(LED,1); // turn off LED

 delay(DITPERIOD); // space between code elements

}

void setup() {

 pinMode(LED,OUTPUT);

 dit(); dit(); dit) // Send “S”

}

It looks similar to the blink sketch, doesn’t it?

In Morse, each character is made up of elements: a dit is 1 element and a dah is three elements. In

addition, the “intracharacter” space between each audible dit/dah is also one element. For example,

the character ‘S’ dit-dit-dit is exactly 5 elements in length: 3 dits + 2 spaces.

Now let’s write the code for dah(), and rearrange things to allow for spaces of different lengths. Now

we have enough code to send anything we want:

http://w8bh.net/

void ditSpaces(int spaces) { // user specifies #dits to wait

 for (int i=0; i<spaces; i++) // count the dits...

 delay(DITPERIOD); // no action, just mark time

}

void dit() {

 digitalWrite(LED,0); // turn on LED

 ditSpaces(1);

 digitalWrite(LED,1); // turn off LED

 ditSpaces(1); // space between code elements

}

void dah() {

 digitalWrite(LED,0); // turn on LED

 ditSpaces(3); // length of dah = 3 dits

 digitalWrite(LED,1); // turn off LED

 ditSpaces(1); // space between code elements

}

void setup() {

 pinMode(LED,OUTPUT);

 dit(); dah(); dit) // Send “R” as an example.

}

Try compiling this yourself. Can you make the LED flash an “R”? Notice that dah() is very similar to dit(),

differing only in the length of time the LED stays lit. Make the code slower or faster by changing the

DITPERIOD define.

Elements, word length, and Paris.

It is more convenient to specify the code speed in words per minute (WPM), rather than milliseconds-

per-dit! To do this we need to know how many dits are in a word. But words are all different lengths,

you say. To calculate Morse speed, the standard word is “PARIS “ (including the space after the word).

The spaces between characters is 3 elements long, and the space between words is 7 elements long:

Character Intracharacter Elements Extracharacter Elements

P (.--.) 11 3 (space after P)
A (.-) 5 3 (space after A)
R (.-.) 7 3 (space after R)
I (..) 3 3 (space after I)
S (…) 5 7 (space after S)

“Paris “ has a total of 31 intra-character and 19 extra-character elements = 50 elements altogether.

Since one minute = 60000 milliseconds and the number of elements in one minute is (WPM * 50

elements), we can rewrite the duration of one element (in milliseconds) as 60000/(50*wpm) =

1200/wpm. Change the definition of DITPERIOD to the following:

#define CODESPEED 13 // speed in Words per Minute

#define DITPERIOD 1200/CODESPEED // period of dit, in milliseconds

A code table.

Now we can specify the speed, in words per minute, and send any character we want as a combination

of dit() and dah(). Let’s create a table for all of the Morse characters, so that we don’t have to specify

dit() dah() dah() dit() every time we want to send the letter ‘p’. It is possible and perfectly fine to create

a huge switch/case statement to do exactly that:

switch (character) {

 case ‘A’: dit(); dah(); break;

 case ‘B’: dah(); dit(); dit(); dit(); break;

 case ‘C’: dah(); dit(); dah(); dit(); break;

 // and so on

}

A more compact way is to create an array of binary numbers, one per character, with all of the

character’s elements encoded into the binary number. This method is not nearly as readable as the

example above, but works equally well:

byte morse[] = { // char encoded into an 8-bit byte

 0b00000101, // A

 0b00011110, // B

 0b00011010, // C

 0b00001110, // D

 0b00000011, // E

 0b00011011, // F

 0b00001100 // G

 //etc

};

void sendElements(int x) { // send string of bits as Morse

 while (x>1) { // stop when value is 1 (or less)

 if (x & 1) dit(); // right-most bit is 1, so dit

 else dah(); // right-most bit is 0, so dah

 x >>= 1; // shift bits right

 }

 characterSpace(); // add inter-character spacing

}

That code is more complicated. Let’s study it.

The Morse table, abbreviated here, contains a representation for all of the letters, numbers, and

punctuation used in Morse code. It is used by the routine sendElements(), which converts a table entry

into the required dit()s and dah()s. Take the array entry for letter ‘C’ for example, which is binary

00011010. The routine reads the bits from RIGHT to LEFT, starting with bit 0, the right-most bit. This

bit is 0, so a dah() is sent:

 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

’C’ 0 0 0 1 1 0 1 0

Each bit is then shifted right so that the old bit1 is now in the bit0 position. This is 1, so a dit() is sent:

 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Shift
right #1

0 0 0 0 1 1 0 1

After the second shift, bit 0 contains a 0, so a dah() is sent:

 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Shift
right #2

0 0 0 0 0 1 1 0

After the third shift, bit 0 contains a 1, so a dit is sent:

 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Shift
right #3

0 0 0 0 0 0 1 1

On the fourth and final shift, all of bits have been read except the last bit, a stop bit, which is always 1:

 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Shift
right #4

0 0 0 0 0 0 0 1

Confusing? Yes, it feels like something only a programmer can love. This method is based on an add-on

I did in 2010 for W8DIZ's DDS VFO project (see http://w8bh.net/avr/MemoryKeyer.pdf), which was

based on earlier work by Jeff Otterson N1KDO in 1997 and David Robinson WW2R/G4FRE. If it makes no

sense, feel free to create your table using the switch/case statement instead.

Other Morse characters.

The supplied code table covers most of the International Morse code characters. But what if you want

to send a different code? For example, Japanese text may be sent using Wabun (Kana) code, where

each character represents a Japanese kana symbol. The kana letter ‘mi’ is sent as “di-di-dah-di-dah”.

How would we send that code? Here are the steps:

1. Convert the rhythm into a series of 1 and 0’s,
 where 1 is dit and 0 is dah

di-di-dah-di-dah = 11010

2. Add a sentinel ‘1’ to the end 110101
3. Reverse the order 101011
4. Add the binary prefix ‘0b’ 0b101011

5. Call sendElements to send it sendElements(0b101011)

Sending characters and strings.

With a table in place, all we need to do is look up the character in the table and send it. Check out the

sendCharacter routine():

void sendCharacter(char c) { // send single ASCII character in Morse

 if (c==32) wordSpace(); // space between words

 else sendElements(morse[c-33]); // send the character

http://w8bh.net/avr/MemoryKeyer.pdf
https://en.wikipedia.org/wiki/Wabun_code

}

This routine accepts a character, looks it up in the table, and converts it to dits and dahs. So where do

the 32 and 33 numbers come from? 32 is the ASCII code for a space, and ASCII 33 ‘!’ is the first entry in

the morse code table. “C-33” converts the ASCII value of the character to an index for the table. Purists

and those who love strongly-typed languages will cringe at mixing character and integer types, but it

works nicely and isn’t hard to understand.

Now we have everything we need to send an entire string, which could be a word, sentence, paragraph,

or even a whole book:

void sendString (char *ptr) {

 while (*ptr) // send the entire string

 sendCharacter(*ptr++); // one character at a time

}

void loop() {

 sendString("CQ DE W8BH");

 delay(5000);

}

Audio.

It is time to add the first piece of hardware. We want to hear the code,

not just see it. A small piezo element will do, like the PS1240 from

Adafruit. Connect the (+) lead to pin B12 and the other lead to ground.

Then add some define statements, and a few lines of audio code to the

dit() and dah() routines:

#define PITCH 1200 // pitch in Hz of morse audio

#define AUDIO PB12 // pin attached to piezo element

void dit() {

 digitalWrite(LED,0); // turn on LED

 tone(AUDIO,PITCH); // and turn on sound

 ditSpaces();

 digitalWrite(LED,1); // turn off LED

 noTone(AUDIO); // and turn off sound

 ditSpaces(); // space between code elements

}

void dah() {

 digitalWrite(LED,0); // turn on LED

 tone(AUDIO,PITCH); // and turn on sound

 ditSpaces(3); // length of dah = 3 dits

 digitalWrite(LED,1); // turn off LED

 noTone(AUDIO); // and turn off sound

 ditSpaces(); // space between code elements

}

The tone() and noTone() routines are provided by the standard Arduino tone library. They are built-in

and do not require any explicit include directive.

https://www.adafruit.com/product/160
https://www.adafruit.com/product/160

More Sound. These go up to 11.

The advantages of piezo elements are that they are small and don’t

use a lot of current. You can hook them directly to a

microcontroller pin. The big disadvantage is that they don’t make

much sound A simple 3” 8-ohm speaker, like the Adafruit 1313

(pictured) will make a much nicer sound indeed. If you connect it

directly to the blue pill, you will enjoy its booming sound until you

fry the microcontroller. It uses too much current! Add a series

current-limiting resistor of 100 ohms (louder) to 200 ohms (safer).

Even better, a single NPN transistor driver using an 2N3904 or

2N4401 will keep the microcontroller safe and provide good sound

output.

Part 2 Summary.

Using a Blue Pill microcontroller and a piezo element, we can now listen to Morse code. It can be of any

length and play at any speed and pitch. In Part 3 we will create useful routines that generate number

patterns, word patters, and callsigns.

See my github account for the full source code.

73, Bruce.

https://en.wikipedia.org/wiki/Up_to_eleven
https://www.adafruit.com/product/1313
https://os.mbed.com/users/4180_1/notebook/using-a-speaker-for-audio-output/
http://w8bh.net/MorseTutor3.pdf
https://github.com/bhall66

