
Build an

LED tester

Bruce E. Hall, W8BH

Introduction

I like the challenge of QRP. It is very satisfying to work

the world on milliwatts. But I have to admit, it can also

be fun to go the other way and crank up the power to a

Spinal Tap 11.

The same goes for electronic projects like an LED tester. To check an LED, all you really need is a 3V coin

battery. It’s simple, cheap, and portable – perfectly matching the cost and complexity of the device

under test. The frugal QRP-guy in me approves.

Or, with a Tim Taylor grunt, you can go wild and overengineer it. That’s what I did with this LED tester.

It’s a battery-operated device that shows you current and forward voltage drop for the LED under test.

You can quickly choose, without any guesswork, a standard resistor for the current draw and LED

brightness you want.

Continue reading if you are interested in building a useful LED tester. I will describe the hardware and

software, step-by-step. When finished, you will have a useful piece of equipment for $20 in parts. It

may not be as cheap or pragmatic as a coin-cell tester, but it’s a lot more fun.

Bill of Materials*

*This table lists parts needed for the steps described below and breadboarding the LED tester.

Additional components are required for PCB assembly. See the builder’s guide for more information.

Part Qty DigiKey Amazon Unit Cost
Seeeduino XIAO 1 1597-102010328-ND Seeed Studio $5.40

128x64 OLED Display 1 n/a HiLetgo, Frienda $6.40

MCP4261 digipot 1 MCP4261-103E/P 1.58

Rotary Encoder 1 PEC11R-4220F-S0024 1.72

100-ohm resistor, 0.1% 1 YR1B100RCC 0.60

LED (for testing)

http://w8bh.net/
https://en.wikipedia.org/wiki/QRP_operation
https://en.wikipedia.org/wiki/Up_to_eleven
https://entertainment.time.com/2010/09/13/top-10-unforgettable-tv-sounds/slide/tim-the-tool-man-taylors-grunt/
http://w8bh.net/LED_tester_Builders_Guide.pdf
https://www.digikey.com/en/products/detail/seeed-technology-co-ltd/102010328/11506471
https://www.amazon.com/Seeeduino-Smallest-Microcontroller-Interfaces-Compatible/dp/B08745JBRP/
https://www.amazon.com/HiLetgo-Serial-128X64-Display-Color/dp/B06XRBTBTB/
https://www.amazon.com/dp/B08LYL7QFQ/
https://www.digikey.com/en/products/detail/microchip-technology/MCP4261-103E-P/1635797
https://www.digikey.com/en/products/detail/bourns-inc/PEC11R-4220F-S0024/4499660
https://www.digikey.com/en/products/detail/te-connectivity-passive-product/YR1B100RCC/3477554

Step 1. The Microcontroller

I have been using Arduino hardware for a long time. The original

ATmega328 chip has been slowly supplanted by newer and faster

devices. For example, I’ve used Blue Pill and ESP32 microcontrollers in

recent projects. The Blue Pill is hard to beat for the money, but works

best with a dedicated programmer. The ESP32 is another great

choice, but comes in so many flavors that picking the right one can be

a chore. For this project I chose a completely different controller: the

Seeeduino (that’s not a typo) XIAO. It’s a chiclet-shaped board,

measuring about 18 x 20 mm, that is quite easy to program.

This board is widely available at a cost of $6 each. You can order it on Amazon or directly from Seeed. I

ordered mine through Digikey. It is programmed and gets its power through a USB-C cable. So, order

one of those, too, if you don’t have one already.

The official setup guide is at https://wiki.seeedstudio.com/Seeeduino-XIAO/#hardware. Briefly,

1. Connect the Seeeduino to your computer via a USB-C cable. (My computer does not have a

USB-C port, so I use a USB-A to USB-C cable). The green LED on your Seeeduino should light up,

indicating that it has power.

2. Start your Aduino IDE application. Go to File > Preferences and fill the “Additional Boards

Manager URL” with the URL for this board, which is:

https://files.seeedstudio.com/arduino/package_seeeduino_boards_index.json

3. Go to Tools > Board Manager > Boards Manager and put the words “Seeeduino XIAO” in the

search box. You should see an entry for “Seeed SAMD Boards”. Click Install.

4. Go to Tools > Board and hover over the choice “Seeed SAMD”. Select “Seeeduino XIAO”.

5. Go to Tools > Board > Port and select the com port associated with your device.

Try uploading the blink sketch. The orange LED on the XIAO should flicker as the code is uploaded, then
the same LED should blink. During upload the computer will register a USB disconnect followed by a
USB reconnect, which is slightly annoying but normal.

For reference, here is the
XIAO board pinout:

https://www.digikey.com/en/products/detail/seeed-technology-co-ltd/102010328/11506471
https://wiki.seeedstudio.com/Seeeduino-XIAO/#hardware
https://files.seeedstudio.com/arduino/package_seeeduino_boards_index.json
https://github.com/bhall66/LED-tester/blob/main/tutorials/step1/step1.ino

Step 2. Adding a display

For this project, I chose a small, monochrome OLED display. It does not
take up much space: the 128x64 pixel display is less than an inch
diagonal. OLED technology gives it a crisp-looking output that makes
smaller fonts readable. And it is cheap: The HiLetGo version on Amazon
is currently $6.40. I got mine on Amazon from “Frienda” at 5 for $16.
Nice.

Compared to power-hungry ILI9341 boards, this OLED display with an
SSD1306 controller uses very little power. It has an I2C interface, so only
2 interface pins are required. The downside is that your microcontroller
must buffer the entire display in its memory. It is not compatible with
older microcontrollers that have limited memory. Fortunately, the XIAO
has no problems driving this display.

Here are the connections between the XIAO and the OLED display:

For those of us of a certain age, the pin labels on the

XAIO sticker are nearly impossible to read. So, refer to

the pinout diagram above. Notice that, with the USB

jack oriented away from you, there are 7 pins on the

left and 7 on the right. The top two pins on either side

are unlabeled. Pin D4 is the fifth pin on the left.

Connect the hardware according to the table above. We will need to write another sketch to test it out.

Adafruit has done the hard work and created a display library for our use. Consider returning the favor

and buying from them.

Here is a sketch to test your display, available on Github as Step 2a:

#include <Wire.h> // built-in I2C library
#include <Adafruit_GFX.h> // Adafruit graphics library
#include <Adafruit_SSD1306.h> // Adafruit OLED library

#define SCREEN_WIDTH 128 // OLED display width, in pixels
#define SCREEN_HEIGHT 64 // OLED display height, in pixels
#define SCREEN_ADDRESS 0x3C // OLED display I2C address, in hex

Adafruit_SSD1306 led(SCREEN_WIDTH, SCREEN_HEIGHT, &Wire);

void setup() {
 led.begin(SSD1306_SWITCHCAPVCC, SCREEN_ADDRESS);
 led.display();
}

void loop() {
}

Several libraries are required. First, since this display uses I2C for communication, we need to add the

Arduino I2C library, called <Wire.h>. Next, we have to add a library for drawing basic graphics and text

objects, called <Adafruit_GFX.h>. Finally, we need a library that allows us to communicate with the

SSD1306 controller on the display board, <Adafruit_SSD1306.h>.

Seeeduino XIAO OLED Display

3v3 VCC

GND GND

“5” (D5) SCL

“4” (D4) SDA

 0.96" I2C OLED Display module

https://adafruit.com/
https://github.com/bhall66/LED-tester/blob/main/tutorials/step2a/step2a.ino

The Wire library is pre-installed, but you might need to add the Adafruit libraries if you haven’t already.

In the IDE, go to Sketch > Include Library > Manage Libraries. In the search box type “Adafruit

SSD1306”. If the corresponding entry does not say “INSTALLED”, install it now. Do the same for

“Adafruit GFX Library”.

After the libraries are installed, take note of the screen address define “0x3C”. You must enter the I2C

address of your display module. Many of these displays use the address 0x3C. Interestingly, the address

printed on my display is wrong, and caused me many hours of frustration. The correct address turned

out to be 0x3C. If, after looking at the documentation for your screen, you cannot determine its

address, download the I2C scanner sketch from GitHub. It will find all of the I2C devices connected to

your microcontroller and send their addresses to the serial monitor. Very handy!

After confirming and entering the address of your I2C module, run the sketch. Do you see anything on

screen? If not, check your hardware connections again, try the I2C scanner, and confirm the address.

Display text by inserting two lines into the setup() routine:

void setup() {
 led.begin(SSD1306_SWITCHCAPVCC, SCREEN_ADDRESS);
 led.setTextColor(WHITE);
 led.print("Hello!");
 led.display();
}

Try sketch Step 2b, available on Github, for a more elaborate demo.

It’s time to consider LED basics. The next step has no code and no construction. Grab a calculator and

get ready for some math instead.

Step 3. Ohm’s Law applied to LEDs

Wikipedia has a good discussion of a simple LED circuit here. You need a voltage

source, an LED, and a resistor for limiting current through the LED. The value of

the resistor R is determined by three things: the voltage source (Vcc), the forward

voltage drop (Vf) across the LED, and the desired current (I) through the LED. The

resistance R = (Vcc - Vf)/I. LED specification sheets will give you Vf, usually in the

1.8-3.3V range, at a typical current of 20 mA.

In the circuit on the left, let’s assume that Vcc = 5.0V and that Vf across the LED is

1.8V. That means that the voltage drop across resistor R1 will be 5.0-1.8 = 3.2

volts. If we use a 300-ohm resistor, the current through the circuit will be

3.2V/300 ohms = 10.7 mA. This circuit will work, at reduced LED brightness, since

this current is less than the specified current of 20 mA. If we want maximum

brightness at full current, we need a smaller resistor. From the formula above, R =

(Vcc- Vf)/I = (5.0-1.8 V)/0.02 A = 160 ohms. Anything smaller will result in too

much current and could damage the LED.

https://github.com/bhall66/Keyboard-Keyer/blob/main/diagnostics/I2C_scanner/I2C_scanner.ino
https://github.com/bhall66/LED-tester/blob/main/tutorials/step2b/step2b.ino
https://en.wikipedia.org/wiki/LED_circuit

Did you follow all of that? Resistor R1 determines the current, and

therefore the brightness of the LED. Vary R1 and we vary the

brightness. If we substitute R1 with a potentiometer, we have a

mechanical way of controlling current/brightness:

This is a good circuit

for testing LEDs, as

long as you do not

crank R1 down too

low. For example, a

5K potentiometer in

series with a 150-

ohm resistor would

work nicely for R1.

Suppose we want to know what value of resistor

will give the LED a certain brightness (or current

draw). We could hook up the circuit above,

adjust R1 for the desired brightness, and then

measure R1’s resistance. It works; try it!

Unfortunately, the measured resistance will

probably not conform to a standard resistor

value. We can avoid non-standard resistances if

we use switched resistors instead of a

potentiometer, as shown here.

Switched resistors work great, but many more

components are required. Fortunately, there is

a single IC which can replace all of these added components: the digital potentiometer.

Step 4. The MCP4261 digital potentiometer

A digital potentiometer, or digipot, mimics a variable resistor through the use of a digitally-controlled

resistor-ladder network. The MCP4261 digipot provide a variable resistance between 0 and 10K ohms

between two of its output pins. The output resistance is quantized into 256 discrete steps. Each step is

10K/256 = 39 ohms. For example, to set the output to 3.9K, you send a value of 100 to the digipot (100

steps * 39 ohm/step = 3.9K). To set the value to 390 ohms, you set the value to 10, etc.

Does it work? Yes, it works very well. But there are a few drawbacks: first, the resistances are specified

with 20% tolerance. OK, but not great. Second, the output resistance is the sum of the step resistance,

as described above, and the resistance of the wiper terminal. This wiper resistance is nominally 75

ohms, and it is non-linear with voltage and temperature. Without a fixed wiper resistance, it is difficult

to accurately compute the potentiometer’s output resistance. And finally, this is a low current device,

rated at 2.5 mA maximum current through the wiper terminal, lower than typical LED currents.

[Side note: variable

resistors with 2

terminals are called

rheostats. Those

with 3 terminals used

to divide voltage

potential are called

potentiometers. We

tend to call all 3-

terminal devices

potentiometers,

whether or not they

are being used as

such.]

https://en.wikipedia.org/wiki/Digital_potentiometer
https://en.wikipedia.org/wiki/Resistor_ladder

An ideal wiper resistance would be zero, allowing us to directly compute the desired resistance, without

any offset, and without any wiper non-linearity. To reduce the error, I am using a dual-potentiometer

chip with both potentiometers in parallel. This reduces the maximum resistance from 10K to 5K,

reduces the resistance step size from 39 ohms to 19.5 ohms, and reduces the effective wiper resistance.

It also doubles the amount of current that the device can handle.

Here is a diagram for the MCP4261 digipot. This schematic symbol

does not show the physical position of the pins; the pins are grouped

functionally. The pins on the left are the input pins; the pins on the

right are the output pins; and the power pins are top and bottom.

Pins 8, 9, and 10 are for potentiometer #0. Pins 5, 6, and 7 are for

potentiometer #1. Pins 1, 2, 3, and 13 are for SPI serial

communication with the microcontroller.

Time to experiment! Connect your MCP4261 according to the

following table. Please note that the XIAO pins D7, D8, and D10 are

located on physical pins 8, 9, and 11.

MCP4261 pin Connects to

1 (CS) XIAO pin 8, labeled “7” (D7)

2 (SCK) XIAO pin 9, labeled “8” (D8/SCK)

3 (SDI) XIAO pin 11, labeled “10” (D10/MOSI)

4 (VSS) GND

14 (VDD) +5V

9 (P0W) Wire to DMM*

10 (P0B) Wire to DMM*

Connect a digital multimeter to digipot pins 9 and 10 and set it to measure resistance. Turn on the

power. What do you see? On power reset, the digipot is set to mid-wiper, which should be about 5K. If

you don’t read about 5K, make sure pin 14 is getting 5V and pin 4 is connected to ground.

The digital potentiometer communicates with the microcontroller using its Serial Peripheral Interface

(SPI). To use the SPI bus we connect its SPI pins (pins 1-3) to the corresponding SPI pins on the MCU, as

shown in the table above. Sending data requires 3 steps in the software:

1. Enabling communication, by takings its ‘chip select’ pin low.

2. Sending data to the device, one byte at a time.

3. Disabling communication, by taking the chip select pin high.

Our MCP4261 uses 2-byte data packets. The first byte is the command byte, and the second byte is data

pertaining to the command. Here is corresponding code:

#include <SPI.h> // use SPI communication with MCP4261
#define DIGIPOT_CS 7 // CS pin on MCP4161 digital potentiometer

void writeDP(byte cmd, byte data) { // write 2 bytes: 1 command byte & 1 data byte
 digitalWrite(DIGIPOT_CS,LOW); // enable device write
 SPI.transfer(cmd); // send the command byte
 SPI.transfer(data); // then send the data byte
 digitalWrite(DIGIPOT_CS,HIGH); // disable device write

https://en.wikipedia.org/wiki/Serial_Peripheral_Interface
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface

}

We start by including the SPI library and specifying which MCU pin is connected to the digipot (MCU pin

D7). Writing a data packet is just 4 lines of code: enable communication, send the command byte,

sending the data byte, and disable communication.

We use writeDP() to set the potentiometer’s wiper position, and therefore the number of internal

resistors in between the two output terminals. For setting potentiometer #0’s wiper position, the

command byte is 0. So, what resistance would the command writeDP(0,34) create? Using the

information above, 34 steps * 39 ohms/step = 1346 ohms.

Using writeDP() above, run the following sketch and measure the resistance.

void setup() {
 SPI.begin(); // initialize SPI communication
 pinMode(DIGIPOT_CS,OUTPUT); // use D7 as DigiPot chip select
}

void loop() {
 writeDP(0,0); delay(5000); // no resistors = 0 ohms
 writeDP(0,128); delay(5000); // 128 resistors = 5K
 writeDP(0,255); delay(5000); // 255 resistors = 10K ohms
}

This sketch is available on GitHub as Step 4A. Your DMM should display alternating resistances of

approximately 10K, 5K, and 0K ohms. There is a 20% tolerance on these values, meaning that the

maximum resistance of 10K could be as low as 8K and as high as 12K. In addition, the wiper itself adds a

nominal resistance of 75 ohms but may be as high as 300 ohms, depending on voltage. My DMM gives

values of 10.12K, 5.12K, and 120 ohms, respectively. Thus, under these conditions, my wiper resistance

is approximately 120 ohms.

Now let’s try using both potentiometers in parallel. This gives us half of the maximum resistance, but

smaller step sizes and greater current handling. Connect digipot pin-5 (P1B) to digipot pin-10 (P0B), and

digipot pin-6 (P1W) to digipot pin-9 (P0W). Now create a new routine, setWiper(), that will set both

potentiometers to the same value. The MCP4261 command to set potentiometer #1 is 0x10:

void setWiper(byte value) { // set both digipot wipers to a specified value
 writeDP(0x00,value); // set pot#0
 writeDP(0x10,value); // set pot#1
}

And change loop() to call this setWiper() instead of writeDP():

void loop() {
 setWiper(0); delay(5000); // no 19.5-ohm resistors = 0 ohms
 setWiper(128); delay(5000); // 128 19.5-ohm resistors = 2.5K
 setWiper(255); delay(5000); // 255 19.5-ohm resistors = 5K
}

What resistances do you see now? My DMM shows 5.07K, 2.57K, and 65 ohms. All resistances have

roughly halved, including the effective wiper resistance which is now 65 ohms.

We now have all the tools we need to set the resistance of our digipot. To specify any resistance R from

0 to 5K, the wiper must be set to (R – Rwiper)/19.5. Let’s create a routine to do that:

void setResistance (int r) { // set pot to a given resistance
 float pos = (r-R_WIPER)/19.53; // calculate wiper position from R

https://github.com/bhall66/LED-tester/blob/main/tutorials/step4a/step4a.ino

 if (pos<0) pos=0; // we can't go below zero ohms
 setWiper(round(pos)); // set the wiper position
}

Notice how the wiper equation in this routine attempts to correct for wiper resistance. Change loop()

again, specifying resistances rather than wiper positions:

void loop() {
 setResistance(2000); delay(5000);
 setResistance(5000); delay(5000);
}

This sketch is available on GitHub as Step 4B. Run it and check your DMM again. Do you see 2K and 5K

resistances? See how close you can get, adjusting the wiper equation according to your specific chip.

Step 5: Display the resistance

We already have a working display, so let’s add the display code back in. Showing the current resistance

on the screen is easy. After appropriate initialization of the OLED display, call ‘showValue()’ to display

the current resistance, and call it from within the setResistance() routine:

void showValue(int value) {
 led.clearDisplay(); // erase display contents
 led.setCursor(10,10); // pick a spot on the display
 led.print(value); // write integer value to display
 led.display(); // and show it
}

The full sketch is available on GitHub as Step 5. Run it. Do the OLED display and your DMM agree?

Change the resistance values to anything between 100 to 5000 ohms and re-run.

Step 6: Add a rotary encoder

Encoders are the modern-day version of the potentiometer.

Indeed, volume controls, which were often potentiometers in

the pre-digital era, are often done with encoders today. So

how do they work?

The encoder has two outputs, A and B,

which are 90-degrees out of phase with

https://github.com/bhall66/LED-tester/blob/main/tutorials/step4b/step4b.ino
https://github.com/bhall66/LED-tester/blob/main/tutorials/step5/step5.ino

each other. As the knob is turned, each output cycles between high and low. You can determine both

motion and direction by comparing the current states with the previous states.

The encoder we are using is an incremental encoder by Bourns. The encoder has 5 pins, 3 on one side

and 2 on the other. Considering only the side with 3 pins, connect the center pin to ground and the

outside pins to XIAO D0 and D1.

In my Morse Tutor series, I show how to code for a rotary encoder. This time we will take the easy route

and use a pre-built library. In the Arduino IDE, go to Sketch > Install Library > Manage Libraries. Search

for “RotaryEncoder” (no spaces) by Matthias Hertel and install it. Try the following code, available as

Step 6a:

#include <RotaryEncoder.h> // Matthias Hertel version
#define ENCODER_B 0 // Connect to MCU pin D0
#define ENCODER_A 1 // Connect to MCU pin D1

RotaryEncoder encoder(ENCODER_A, ENCODER_B); // instantiate encoder object

void setup() {
 Serial.begin(115200); // init serial monitor at 115200 baud
}

void loop() { // set alternating resistances:
 static int oldPos=0; // previous position
 encoder.tick(); // keep encoder states current
 int pos = encoder.getPosition(); // get current encoder position
 if (pos!=oldPos) { // has encoder moved?
 Serial.println(pos); // if so, show new position
 oldPos = pos; // and remember it
 }
}

The four important lines are highlighted. First, include the library. Then, create and initialize the

encoder object, giving it the pin numbers for its two data lines. In loop() you must do two things:

continuously update the encoder’s status with tick(), and then get the encoder’s position with

getPosition().

Run this sketch and open your serial monitor. As you turn the encoder knob, the “position” of the

encoder will be shown as an integer. Turn one way, the number increases. Turn the other way, the

number decreases. If you don’t see this effect, check your hardware connections.

Now we can use our encoder to control the digipot’s resistance. Can you combine this code with the

step5 sketch? The combined sketch is available on Github as Step 6b. The new loop() becomes:

void loop() {
 static int oldPos = 0; // previous position
 encoder.tick(); // keep encoder states current
 int pos = encoder.getPosition(); // get current encoder position
 if (pos != oldPos) { // hsa encoder moved?
 setResistance(pos*100); // set resistance in 100-ohm steps
 oldPos = pos; // and remember it
 }
}

The only difference is calling setResistance() instead of a Serial.print(). Run it with your DMM

connected. Turn the encoder knob, and verify that the resistance displayed on the OLED matches what

your DMM sees.

http://w8bh.net/MorseTutor5.pdf
https://github.com/bhall66/LED-tester/blob/main/tutorials/step6a/step6a.ino
https://github.com/bhall66/LED-tester/blob/main/tutorials/step6b/step6b.ino

Step 7: Measuring LED voltage and current

Going back to the schematic in Step 3, let’s add a fixed resistor R2, and two voltage test points above

and below it, called VHI and VLO:

The LED forward voltage, Vf, is the voltage difference across its leads, which is (VLO – GND). Since GND is

at zero potential this simplifies to Vf = VLO.

How can we determine the current flowing through the resistor, ILED, without our handy DMM?

Remember that in series circuit, the same current flows through each component, so IR1 = IR2 = ILED. From

Ohm’s Law, we know that current flowing through the fixed resistor R2 = V/R. The resistance is 100

ohms, and the voltage across R2 is VHI - VLO, therefore, ILED = IR2 = (VHI – VLO)/100.

Breadboard the circuit above, removing the DMM and applying a Vcc = 3.3V to digipot pin 10. Digipot

pin 9 is connected to a 100-ohm resistor, which is connected to the anode of a common red LED, and

the LED cathode is connected to ground. Make sure to use 3.3V in this circuit, not 5V. Run the sketch.

The LED should light, and should get brighter as you turn the encoder knob to decrease resistance. Now

measure the voltage across the LED with your DMM. At a resistance of 2000, I read about 1.77V across

the LED. This forward voltage gradually increases to about 1.91V as I decrease the resistance. Most red

LEDs have a Vf of 2V at maximum brightness, and slightly less when dim. What do you read?

Measure the voltage VHI and VLO at different

resistance values, and create a table like this:

VLO represents the forward voltage across

the LED. The last column, calculated from

VHI and VLO, represents the current flowing

through the LED.

Resistance V_HI V_LO (V_HI – V_LO)/100

2000 1.84 1.77 0.0007 A = 0.7 mA

1000 1.93 1.80 0.0013 A = 1.3 mA

500 2.08 1.83 0.0025 A = 2.5 mA

200 2.36 1.88 0.0048 A = 4.8 mA

100 2.61 1.91 0.0070 A = 7.0 mA

All we need is a way to measure VHI and VLO. Fortunately, the XIAO has built-in analog-to-digital

conversion. Connect these test points to ADC input pins on the microcontroller and Bob’s your uncle.

Well, almost. To get the value of an analog input we use an Arduino routine called analogRead(). Pass

it the MCU pin that you are reading, and it returns a value from 0 to 1023, where 0 = 0 volts and 1023 =

3.3 volts. To convert this value to volts, multiply by 3.3 and divide by 1023.

Let’s create a simple routine that returns the voltage on any input pin:

float getVoltage(int pin) { // returns voltage on an input pin, 3.3V max
 int data = analogRead(pin); // get analog input, returns range 0..1023
 return (3.3*data)/1023; // convert this value to voltage
}

Let’s try measuring voltages with our microcontroller. Connect XIAO pin 2 to VHI and pin 3 to VLO. Once

per second, we will measure both voltages and show them on the display:

The complete sketch is available on GitHub as Step 7. Run it. Turn the rotary encoder and watch how

the values of R, VHI, VLO, and current change. Do the voltages and current closely match what you

measured with your DMM?

Finishing touches

We have a working LED tester which shows current and Vf – for any given resistance – with less than 100

lines of code. The final sketch adds a few touches, such as common-value resistors and checking for

short-circuits. The PCB adds a few features of its own: battery operation and selectable 3.3V/5V

testing. What features will you add?

Reference

1. This document on w8bh.net

2. Builder’s Guide

3. Schematic

4. Source code on GitHub

5. PCB Gerbers

Last updated 10/10/2021

https://github.com/bhall66/LED-tester/blob/main/tutorials/step7/step7.ino
http://www.w8bh.net/LED_tester.pdf
http://w8bh.net/LED_tester_Builders_Guide.pdf
http://www.w8bh.net/LED_tester_schematic.jpg
https://github.com/bhall66/LED-tester
https://github.com/bhall66/LED-tester/tree/main/pcb

